Transcriptional profiling of Wnt3a mutants identifies Sp transcription factors as essential effectors of the Wnt/β-catenin pathway in neuromesodermal stem cells
Neuromesodermal (NM) stem cells reside in the primitive streak (PS) of gastrulating vertebrate embryos and generate precursors of the spinal cord and musculoskeletal system. Although Wnt3a/β-catenin signaling is crucial for NM stem cell maintenance and differentiation, few key transcriptional effect...
Gespeichert in:
Veröffentlicht in: | PloS one 2014, Vol.9 (1), p.e87018-e87018 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuromesodermal (NM) stem cells reside in the primitive streak (PS) of gastrulating vertebrate embryos and generate precursors of the spinal cord and musculoskeletal system. Although Wnt3a/β-catenin signaling is crucial for NM stem cell maintenance and differentiation, few key transcriptional effectors have been identified. Through a concerted transcriptional profiling and genetic approach we have determined that two Zn(2+)-finger transcription factors, Sp5 and Sp8, are regulated by Wnt3a in the PS, and are essential for neural and musculoskeletal patterning. These results identify Sp5 and Sp8 as pivotal downstream effectors of Wnt3a, and suggest that they are essential for the self-renewal and differentiation of NM stem cells. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0087018 |