Climatic Control on Plant and Soil δ13C along an Altitudinal Transect of Lushan Mountain in Subtropical China: Characteristics and Interpretation of Soil Carbon Dynamics
Decreasing temperature and increasing precipitation along altitude gradients are typical mountain climate in subtropical China. In such a climate regime, identifying the patterns of the C stable isotope composition (δ13C) in plants and soils and their relations to the context of climate change is es...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-01, Vol.9 (1), p.e86440 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Decreasing temperature and increasing precipitation along altitude gradients are typical mountain climate in subtropical China. In such a climate regime, identifying the patterns of the C stable isotope composition (δ13C) in plants and soils and their relations to the context of climate change is essential. In this study, the patterns of δ13C variation were investigated for tree leaves, litters, and soils in the natural secondary forests at four altitudes (219, 405, 780, and 1268 m a.s.l.) in Lushan Mountain, central subtropical China. For the dominant trees, both leaf and leaf-litter δ13C decreased as altitude increased from low to high altitude, whereas surface soil δ13C increased. The lower leaf δ13C at high altitudes was associated with the high moisture-related discrimination, while the high soil δ13C is attributed to the low temperature-induced decay. At each altitude, soil δ13C became enriched with soil depth. Soil δ13C increased with soil C concentrations and altitude, but decreased with soil depth. A negative relationship was also found between O-alkyl C and δ13C in litter and soil, whereas a positive relationship was observed between aromatic C and δ13C. Lower temperature and higher moisture at high altitudes are the predominant control factors of δ13C variation in plants and soils. These results help understand C dynamics in the context of global warming. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0086440 |