Inhibitory effects of vinpocetine on the progression of atherosclerosis are mediated by Akt/NF-κB dependent mechanisms in apoE-/- mice
Recent studies have found additional roles for vinpocetine, a potent phosphodiesterase type I inhibitor, in anti-proliferation and anti-inflammation of vascular smooth muscle cells and cancer cells via different mechanisms. In this study, we attempted to investigate whether vinpocetine protected aga...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-12, Vol.8 (12), p.e82509-e82509 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies have found additional roles for vinpocetine, a potent phosphodiesterase type I inhibitor, in anti-proliferation and anti-inflammation of vascular smooth muscle cells and cancer cells via different mechanisms. In this study, we attempted to investigate whether vinpocetine protected against atherosclerotic development in apoE(-/-) mice and explore the underlying anti-atherogenic mechanisms in macrophages.
Vinpocetine markedly decreased atherosclerotic lesion size in apoE(-/-) mice measured by oil red O. Masson's trichrome staining and immunohistochemical analyses revealed that vinpocetine significantly increased the thickness of fibrous cap, reduced the size of lipid-rich necrotic core and attenuated inflammation. In vitro experiments exhibited a significant decrease in monocyte adhesion treated with vinpocetine. Further, active TNF-α, IL-6, monocyte chemoattractant protein-1 and matrix metalloproteinase-9 expression induced by ox-LDL were attenuated by vinpocetine in a dose-dependent manner. Similarly, ox-LDL-induced reactive oxygen species were significantly repressed by vinpocetine. Both western blot and luciferase activity assay showed that vinpocetine inhibited the enhanced Akt, IKKα/β, IκBα phosphorylation and NF-κB activity induced by ox-LDL, and the inhibition of NF-κB activity was partly caused by Akt dephosphorylation. However, knockdown of PDE1B did not affect Akt, IKKα/β and IκBα phosphorylation.
These results suggest that vinpocetine exerts anti-atherogenic effects through inhibition of monocyte adhesion, oxidative stress and inflammatory response, which are mediated by Akt/NF-κB dependent pathway but independent of PDE1 blockade in macrophages. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0082509 |