Vertebrate dissimilarity due to turnover and richness differences in a highly beta-diverse region: the role of spatial grain size, dispersal ability and distance
We explore the influence of spatial grain size, dispersal ability, and geographic distance on the patterns of species dissimilarity of terrestrial vertebrates, separating the dissimilarity explained by species replacement (turnover) from that resulting from richness differences. With data for 905 sp...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-12, Vol.8 (12), p.e82905-e82905 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore the influence of spatial grain size, dispersal ability, and geographic distance on the patterns of species dissimilarity of terrestrial vertebrates, separating the dissimilarity explained by species replacement (turnover) from that resulting from richness differences. With data for 905 species of terrestrial vertebrates distributed in the Isthmus of Tehuantepec, classified into five groups according to their taxonomy and dispersal ability, we calculated total dissimilarity and its additive partitioning as two components: dissimilarity derived from turnover and dissimilarity derived from richness differences. These indices were compared using fine (10 x 10 km), intermediate (20 x 20 km) and coarse (40 x 40 km) grain grids, and were tested for any correlations with geographic distance. The results showed that total dissimilarity is high for the terrestrial vertebrates in this region. Total dissimilarity, and dissimilarity due to turnover are correlated with geographic distance, and the patterns are clearer when the grain is fine, which is consistent with the distance-decay pattern of similarity. For all terrestrial vertebrates tested on the Isthmus of Tehuantepec both the dissimilarity derived from turnover and the dissimilarity resulting from richness differences make important contributions to total dissimilarity, and dispersal ability does not seem to influence the dissimilarity patterns. These findings support the idea that conservation efforts in this region require a system of interconnected protected areas that embrace the environmental, climatic and biogeographic heterogeneity of the area. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0082905 |