Leaf longevity as a normalization constant in allometric predictions of plant production
In metabolic scaling theory the size-dependence of plant processes is described by a power function of form Y=Y o M (θ) where Y is a characteristic such as plant productivity that changes with plant size (M) raised to the θ (th) power and Y o is a normalization constant that adjusts the general rela...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-12, Vol.8 (12), p.e81873-e81873 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In metabolic scaling theory the size-dependence of plant processes is described by a power function of form Y=Y o M (θ) where Y is a characteristic such as plant productivity that changes with plant size (M) raised to the θ (th) power and Y o is a normalization constant that adjusts the general relationship across environments and species. In essence, the theory considers that the value of θ arises in the size-dependent relationship between leaf area and vascular architecture that influences plant function and that Y o modulates this general relationship to account for ecological and evolutionary effects on the exchange of resources between plant and environment. Enquist and colleagues have shown from first principles that Y o is a function of carbon use efficiency, the carbon fraction of a plant, the area-specific carbon assimilation rate of a leaf, the laminar area of a leaf, and the mass of a leaf. We show that leaf longevity provides a functional integration of these traits that can serve as a simpler normalization in scaling plant productivity for individual species and potentially for mixed-species communities as well. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0081873 |