Recursive N-way partial least squares for brain-computer interface

In the article tensor-input/tensor-output blockwise Recursive N-way Partial Least Squares (RNPLS) regression is considered. It combines the multi-way tensors decomposition with a consecutive calculation scheme and allows blockwise treatment of tensor data arrays with huge dimensions, as well as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-07, Vol.8 (7), p.e69962-e69962
Hauptverfasser: Eliseyev, Andrey, Aksenova, Tetiana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the article tensor-input/tensor-output blockwise Recursive N-way Partial Least Squares (RNPLS) regression is considered. It combines the multi-way tensors decomposition with a consecutive calculation scheme and allows blockwise treatment of tensor data arrays with huge dimensions, as well as the adaptive modeling of time-dependent processes with tensor variables. In the article the numerical study of the algorithm is undertaken. The RNPLS algorithm demonstrates fast and stable convergence of regression coefficients. Applied to Brain Computer Interface system calibration, the algorithm provides an efficient adjustment of the decoding model. Combining the online adaptation with easy interpretation of results, the method can be effectively applied in a variety of multi-modal neural activity flow modeling tasks.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0069962