Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1' site

Pichiapastoris is one of the most widely used expression systems for the production of recombinant secretory proteins. Its universal application is, however, somewhat hampered by its unpredictable yields for different heterologous proteins, which is now believed to be caused in part by their varied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-09, Vol.8 (9), p.e75347-e75347
Hauptverfasser: Yang, Song, Kuang, Ye, Li, Hongbo, Liu, Yuehong, Hui, Xiaoyan, Li, Peng, Jiang, Zhiwu, Zhou, Yulai, Wang, Yu, Xu, Aimin, Li, Shiwu, Liu, Pentao, Wu, Donghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pichiapastoris is one of the most widely used expression systems for the production of recombinant secretory proteins. Its universal application is, however, somewhat hampered by its unpredictable yields for different heterologous proteins, which is now believed to be caused in part by their varied efficiencies to traffic through the host secretion machinery. The yeast endoprotease Kex2 removes the signal peptides from pre-proteins and releases the mature form of secreted proteins, thus, plays a pivotal role in the yeast secretory pathways. In this study, we found that the yields of many recombinant proteins were greatly influenced by Kex2 P1' site residues and the optimized P1's amino acid residue could largely determine the final amount of secretory proteins synthesized and secreted. A further improvement of secretory yield was achieved by genomic integration of additional Kex2 copies, which again highlighted the importance of Kex2 cleavage to the production of recombinant secretory proteins in Pichia yeast.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0075347