Predicting network activity from high throughput metabolomics

The functional interpretation of high throughput metabolomics by mass spectrometry is hindered by the identification of metabolites, a tedious and challenging task. We present a set of computational algorithms which, by leveraging the collective power of metabolic pathways and networks, predict func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2013-07, Vol.9 (7), p.e1003123-e1003123
Hauptverfasser: Li, Shuzhao, Park, Youngja, Duraisingham, Sai, Strobel, Frederick H, Khan, Nooruddin, Soltow, Quinlyn A, Jones, Dean P, Pulendran, Bali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The functional interpretation of high throughput metabolomics by mass spectrometry is hindered by the identification of metabolites, a tedious and challenging task. We present a set of computational algorithms which, by leveraging the collective power of metabolic pathways and networks, predict functional activity directly from spectral feature tables without a priori identification of metabolites. The algorithms were experimentally validated on the activation of innate immune cells.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1003123