Acetylation of Chromatin-Associated Histone H3 Lysine 56 Inhibits the Development of Encysted Artemia Embryos

As a response to harsh environments, the crustacean artemia produces diapause gastrula embryos (cysts), in which cell division and embryonic development are totally arrested. This dormant state can last for very long periods but be terminated by specific environmental stimuli. Thus, artemia is an id...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-06, Vol.8 (6), p.e68374-e68374
Hauptverfasser: Zhou, Rong, Yang, Fan, Chen, Dian-Fu, Sun, Yu-Xia, Yang, Jin-Shu, Yang, Wei-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a response to harsh environments, the crustacean artemia produces diapause gastrula embryos (cysts), in which cell division and embryonic development are totally arrested. This dormant state can last for very long periods but be terminated by specific environmental stimuli. Thus, artemia is an ideal model organism in which to study cell cycle arrest and embryonic development. Our study focuses on the roles of H3K56ac in the arrest of cell cycle and development during artemia diapause formation and termination. We found that the level of H3K56ac on chromatin increased during diapause formation, and decreased upon diapause termination, remaining basal level throughout subsequent embryonic development. In both HeLa cells and artemia, blocking the deacetylation with nicotinamide, a histone deacetylase inhibitor, increased the level of H3K56ac on chromatin and induced an artificial cell cycle arrest. Furthermore, we found that this arrest of the cell cycle and development was induced by H3K56ac and dephosphorylation of the checkpoint protein, retinoblastoma protein. These results have revealed the dynamic change in H3K56ac on chromatin during artemia diapause formation and termination. Thus, our findings provide insight into the regulation of cell division during arrest of artemia embryonic development and provide further insight into the functions of H3K56ac.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0068374