Patterns of cave biodiversity and endemism in the Appalachians and Interior Plateau of Tennessee, USA

Using species distribution data, we developed a georeferenced database of troglobionts (cave-obligate species) in Tennessee to examine spatial patterns of species richness and endemism, including >2000 records for 200 described species. Forty aquatic troglobionts (stygobionts) and 160 terrestrial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-05, Vol.8 (5), p.e64177-e64177
Hauptverfasser: Niemiller, Matthew L, Zigler, Kirk S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using species distribution data, we developed a georeferenced database of troglobionts (cave-obligate species) in Tennessee to examine spatial patterns of species richness and endemism, including >2000 records for 200 described species. Forty aquatic troglobionts (stygobionts) and 160 terrestrial troglobionts are known from caves in Tennessee, the latter having the greatest diversity of any state in the United States. Endemism was high, with 25% of terrestrial troglobionts (40 species) and 20% of stygobionts (eight species) known from just a single cave and nearly two-thirds of all troglobionts (130 species) known from five or fewer caves. Species richness and endemism were greatest in the Interior Plateau (IP) and Southwestern Appalachians (SWA) ecoregions, which were twice as diverse as the Ridge and Valley (RV). Troglobiont species assemblages were most similar between the IP and SWA, which shared 59 species, whereas the RV cave fauna was largely distinct. We identified a hotspot of cave biodiversity with a center along the escarpment of the Cumberland Plateau in south-central Tennessee defined by both species richness and endemism that is contiguous with a previously defined hotspot in northeastern Alabama. Nearly half (91 species) of Tennessee's troglobiont diversity occurs in this region where several cave systems contain ten or more troglobionts, including one with 23 species. In addition, we identified distinct troglobiont communities across the state. These communities corresponded to hydrological boundaries and likely reflect past or current connectivity between subterranean habitats within and barriers between hydrological basins. Although diverse, Tennessee's subterranean fauna remains poorly studied and many additional species await discovery and description. We identified several undersampled regions and outlined conservation and management priorities to improve our knowledge and aid in protection of the subterranean biodiversity in Tennessee.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0064177