Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer

MicroRNAs (miRNAs) act as transcriptional regulators and play pivotal roles in carcinogenesis. According to miRNA target databases, one miRNA may regulate many genes as its targets, while one gene may be targeted by many miRNAs. These findings indicate that relationships between miRNAs and their tar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-05, Vol.8 (5), p.e62589
Hauptverfasser: Hashimoto, Yutaka, Akiyama, Yoshimitsu, Yuasa, Yasuhito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MicroRNAs (miRNAs) act as transcriptional regulators and play pivotal roles in carcinogenesis. According to miRNA target databases, one miRNA may regulate many genes as its targets, while one gene may be targeted by many miRNAs. These findings indicate that relationships between miRNAs and their targets may not be one-to-one. However, many reports have described only a one-to-one, one-to-multiple or multiple-to-one relationship between miRNA and its target gene in human cancers. Thus, it is necessary to determine whether or not a combination of some miRNAs would regulate multiple targets and be involved in carcinogenesis. To find some groups of miRNAs that may synergistically regulate their targets in human gastric cancer (GC), we re-analyzed our previous miRNA expression array data and found that 50 miRNAs were up-regulated on treatment with 5-aza-2'-deoxycytidine in a GC cell line. The "TargetScan" miRNA target database predicted that some of these miRNAs have common target genes. We also referred to the GEO database for expression of these common target genes in human GCs, which might be related to gastric carcinogenesis. In this study, we analyzed two miRNA combinations, miR-224 and -452, and miR-181c and -340. Over-expression of both miRNA combinations dramatically down-regulated their target genes, DPYSL2 and KRAS, and KRAS and MECP2, respectively. These miRNA combinations synergistically decreased cell proliferation upon transfection. Furthermore, we revealed that these miRNAs were down-regulated through promoter hypermethylation in GC cells. Thus, it is likely that the relationships between miRNAs and their targets are not one-to-one but multiple-to-multiple in GCs, and that these complex relationships may be related to gastric carcinogenesis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0062589