Acetylation of human TCF4 (TCF7L2) proteins attenuates inhibition by the HBP1 repressor and induces a conformational change in the TCF4::DNA complex
The members of the TCF/LEF family of DNA-binding proteins are components of diverse gene regulatory networks. As nuclear effectors of Wnt/β-catenin signaling they act as assembly platforms for multimeric transcription complexes that either repress or activate gene expression. Previously, it was show...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-04, Vol.8 (4), p.e61867-e61867 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The members of the TCF/LEF family of DNA-binding proteins are components of diverse gene regulatory networks. As nuclear effectors of Wnt/β-catenin signaling they act as assembly platforms for multimeric transcription complexes that either repress or activate gene expression. Previously, it was shown that several aspects of TCF/LEF protein function are regulated by post-translational modification. The association of TCF/LEF family members with acetyltransferases and deacetylases prompted us to investigate whether vertebrate TCF/LEF proteins are subject to acetylation. Through co-expression with p300 and CBP and subsequent analyses using mass spectrometry and immunodetection with anti-acetyl-lysine antibodies we show that TCF4 can be acetylated at lysine K₁₅₀ by CBP. K₁₅₀ acetylation is restricted to TCF4E splice variants and requires the simultaneous presence of β-catenin and the unique TCF4E C-terminus. To examine the functional consequences of K₁₅₀ acetylation we substituted K₁₅₀ with amino acids representing the non-acetylated and acetylated states. Reporter gene assays based on Wnt/β-catenin-responsive promoter regions did not indicate a general role of K₁₅₀ acetylation in transactivation by TCF4E. However, in the presence of CBP, non-acetylatable TCF4E with a K₁₅₀R substitution was more susceptible to inhibition by the HBP-1 repressor protein compared to wild-type TCF4E. Acetylation of K₁₅₀ using a bacterial expression system or amino acid substitutions at K₁₅₀ alter the electrophoretic properties of TCF4E::DNA complexes. This result suggests that K₁₅₀ acetylation leads to a conformational change that may also represent the mechanism whereby acetylated TCF4E acquires resistance against HBP1. In summary, TCF4 not only recruits acetyltransferases but is also a substrate for these enzymes. The fact that acetylation affects only a subset of TCF4 splice variants and is mediated preferentially by CBP suggests that the conditional acetylation of TCF4E is a novel regulatory mechanism that diversifies the transcriptional output of Wnt/β-catenin signaling in response to changing intracellular signaling milieus. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0061867 |