Bayesian inference for generalized linear mixed model based on the multivariate t distribution in population pharmacokinetic study

This article provides a fully bayesian approach for modeling of single-dose and complete pharmacokinetic data in a population pharmacokinetic (PK) model. To overcome the impact of outliers and the difficulty of computation, a generalized linear model is chosen with the hypothesis that the errors fol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-03, Vol.8 (3), p.e58369
Hauptverfasser: Yan, Fang-Rong, Huang, Yuan, Liu, Jun-Lin, Lu, Tao, Lin, Jin-Guan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article provides a fully bayesian approach for modeling of single-dose and complete pharmacokinetic data in a population pharmacokinetic (PK) model. To overcome the impact of outliers and the difficulty of computation, a generalized linear model is chosen with the hypothesis that the errors follow a multivariate Student t distribution which is a heavy-tailed distribution. The aim of this study is to investigate and implement the performance of the multivariate t distribution to analyze population pharmacokinetic data. Bayesian predictive inferences and the Metropolis-Hastings algorithm schemes are used to process the intractable posterior integration. The precision and accuracy of the proposed model are illustrated by the simulating data and a real example of theophylline data.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0058369