DNA and morphology unite two species and 10 million year old fossils

Species definition and delimitation is a non-trivial problem in evolutionary biology that is particularly problematic for fossil organisms. This is especially true when considering the continuity of past and present species, because species defined in the fossil record are not necessarily equivalent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-12, Vol.7 (12), p.e52083-e52083
Hauptverfasser: Hills, Simon F K, Crampton, James S, Trewick, Steven A, Morgan-Richards, Mary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Species definition and delimitation is a non-trivial problem in evolutionary biology that is particularly problematic for fossil organisms. This is especially true when considering the continuity of past and present species, because species defined in the fossil record are not necessarily equivalent to species defined in the living fauna. Correctly assigned fossil species are critical for sensitive downstream analysis (e.g., diversification studies and molecular-clock calibration). The marine snail genus Alcithoe exemplifies many of the problems with species identification. The paucity of objective diagnostic characters, prevalence of morphological convergence between species and considerable variability within species that are observed in Alcithoe are typical of a broad range of fossilised organisms. Using a synthesis of molecular and morphometric approaches we show that two taxa currently recognised as distinct are morphological variants of a single species. Furthermore, we validate the fossil record for one of these morphotypes by finding a concordance between the palaeontological record and divergence time of the lineage inferred using molecular-clock analysis. This work demonstrates the utility of living species represented in the fossil record as candidates for molecular-clock calibration, as the veracity of fossil species assignment can be more rigorously tested.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0052083