Reproductive number and serial interval of the first wave of influenza A(H1N1)pdm09 virus in South Africa

Describing transmissibility parameters of past pandemics from diverse geographic sites remains critical to planning responses to future outbreaks. We characterize the transmissibility of influenza A(H1N1)pdm09 (hereafter pH1N1) in South Africa during 2009 by estimating the serial interval (SI), the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-11, Vol.7 (11), p.e49482-e49482
Hauptverfasser: Archer, Brett N, Tempia, Stefano, White, Laura F, Pagano, Marcello, Cohen, Cheryl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Describing transmissibility parameters of past pandemics from diverse geographic sites remains critical to planning responses to future outbreaks. We characterize the transmissibility of influenza A(H1N1)pdm09 (hereafter pH1N1) in South Africa during 2009 by estimating the serial interval (SI), the initial effective reproductive number (initial R(t)) and the temporal variation of R(t). We make use of data from a central registry of all pH1N1 laboratory-confirmed cases detected throughout South Africa. Whenever date of symptom onset is missing, we estimate it from the date of specimen collection using a multiple imputation approach repeated 100 times for each missing value. We apply a likelihood-based method (method 1) for simultaneous estimation of initial R(t) and the SI; estimate initial R(t) from SI distributions established from prior field studies (method 2); and the Wallinga and Teunis method (method 3) to model the temporal variation of R(t). 12,360 confirmed pH1N1 cases were reported in the central registry. During the period of exponential growth of the epidemic (June 21 to August 3, 2009), we simultaneously estimate a mean R(t) of 1.47 (95% CI: 1.30-1.72) and mean SI of 2.78 days (95% CI: 1.80-3.75) (method 1). Field studies found a mean SI of 2.3 days between primary cases and laboratory-confirmed secondary cases, and 2.7 days when considering both suspected and confirmed secondary cases. Incorporating the SI estimate from field studies using laboratory-confirmed cases, we found an initial R(t) of 1.43 (95% CI: 1.38-1.49) (method 2). The mean R(t) peaked at 2.91 (95% CI: 0.85-2.91) on June 21, as the epidemic commenced, and R(t)>1 was sustained until August 22 (method 3). Transmissibility characteristics of pH1N1 in South Africa are similar to estimates reported by countries outside of Africa. Estimations using the likelihood-based method are in agreement with field findings.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0049482