Over-expression of DSCR1 protects against post-ischemic neuronal injury

The Down syndrome candidate region 1 (DSCR1) gene is located on human chromosome 21 and its protein is over-expressed in brains of Down syndrome individuals. DSCR1 can modulate the activity of calcineurin, a phosphatase abundant in the brain, but its influence on stroke outcome is not clear. We comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-10, Vol.7 (10), p.e47841-e47841
Hauptverfasser: Brait, Vanessa H, Martin, Katherine R, Corlett, Alicia, Broughton, Brad R S, Kim, Hyun Ah, Thundyil, John, Drummond, Grant R, Arumugam, Thiruma V, Pritchard, Melanie A, Sobey, Christopher G
Format: Artikel
Sprache:eng
Schlagworte:
RNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Down syndrome candidate region 1 (DSCR1) gene is located on human chromosome 21 and its protein is over-expressed in brains of Down syndrome individuals. DSCR1 can modulate the activity of calcineurin, a phosphatase abundant in the brain, but its influence on stroke outcome is not clear. We compared stroke outcome in wildtype (WT) and transgenic (DSCR1-TG) mice which over-express isoform 1 of human DSCR1. Transient cerebral ischemia was produced by occlusion of the middle cerebral artery for 0.5 h. After 23.5 h reperfusion, we assessed neurological impairment, brain infarct and edema volume, leukocyte infiltration and markers of inflammation. Intrinsic resistance to apoptosis following glucose deprivation was also assessed in primary cultures of WT and DSCR1-TG neurons. In contrast to WT, DSCR1-TG mice had an improved neurological deficit score, greater grip strength, attenuated infarct volume and brain swelling, and lacked hippocampal lesions after stroke. Expression of mouse DSCR1-1, but not DSCR1-4, mRNA and protein was increased by ischemia in both WT and DSCR1-TG. Brain calcineurin activity was increased to a similar degree after ischemia in each genotype. DSCR1-TG mice had fewer infiltrating neutrophils and activated microglia compared with WT, in association with an attenuated upregulation of several pro-inflammatory genes. Neurons from DSCR1-TG mice were more resistant than WT neurons to apoptotic cell death following 24 h of glucose deprivation. Over-expression of DSCR1 in mice improves outcome following stroke. Mechanisms underlying this protection may involve calcineurin-independent, anti-inflammatory and anti-apoptotic effects mediated by DSCR1 in neurons.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0047841