Inverse regulation of the cytosolic Ca²⁺ buffer parvalbumin and mitochondrial volume in muscle cells via SIRT1/PGC-1α axis

Skeletal muscles show a high plasticity to cope with various physiological demands. Different muscle types can be distinguished by the force, endurance, contraction/relaxation kinetics (fast-twitch vs. slow-twitch muscles), oxidative/glycolytic capacity, and also with respect to Ca²⁺-signaling compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-09, Vol.7 (9), p.e44837
Hauptverfasser: Ducreux, Sylvie, Gregory, Patrick, Schwaller, Beat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skeletal muscles show a high plasticity to cope with various physiological demands. Different muscle types can be distinguished by the force, endurance, contraction/relaxation kinetics (fast-twitch vs. slow-twitch muscles), oxidative/glycolytic capacity, and also with respect to Ca²⁺-signaling components. Changes in Ca²⁺ signaling and associated Ca²⁺-dependent processes are thought to underlie the high adaptive capacity of muscle fibers. Here we investigated the consequences and the involved mechanisms caused by the ectopic expression of the Ca²⁺-binding protein parvalbumin (PV) in C2C12 myotubes in vitro, and conversely, the effects caused by its absence in in fast-twitch muscles of parvalbumin null-mutant (PV⁻/⁻) mice in vivo. The absence of PV in fast-twitch muscle tibialis anterior (TA) resulted in an increase in the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and of its positive regulator, the deacetylase sirtuin 1 (SIRT1). TA muscles from PV⁻/⁻ mice also have an increased mitochondrial volume. Mild ionophore treatment of control (PV-devoid) C2C12 myotubes causing a moderate elevation in [Ca²⁺](c) resulted in an increase in mitochondrial volume, together with elevated PGC-1α and SIRT1 expression levels, whilst it increased PV expression levels in myotubes stably transfected with PV. In PV-expressing myotubes the mitochondrial volume, PGC-1α and SIRT1 were significantly lower than in control C2C12 myotubes already at basal conditions and application of ionophore had no effect on either one. SIRT1 activation causes a down-regulation of PV in transfected myotubes, whilst SIRT1 inhibition has the opposite effect. We conclude that PV expression and mitochondrial volume in muscle cells are inversely regulated via a SIRT1/PGC-1α signaling axis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0044837