Transcriptional regulation of mouse PXR gene: an interplay of transregulatory factors
Pregnane X Receptor (PXR) is an important ligand-activated nuclear receptor functioning as a 'master regulator' of expression of phase I, phase II drug metabolizing enzymes, and members of the drug transporters. PXR is primarily expressed in hepatic tissues and to lesser extent in other no...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-08, Vol.7 (8), p.e44126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pregnane X Receptor (PXR) is an important ligand-activated nuclear receptor functioning as a 'master regulator' of expression of phase I, phase II drug metabolizing enzymes, and members of the drug transporters. PXR is primarily expressed in hepatic tissues and to lesser extent in other non-hepatic tissues both in human and in mice. Although its expression profile is well studied but little is known about the regulatory mechanisms that govern PXR gene expression in these cells. In the present study, we have cloned and characterized over 5 kb (-4963 to +54) region lying upstream of mouse PXR transcription start site. Promoter-reporter assays revealed that the proximal promoter region of up to 1 kb is sufficient to support the expression of PXR in the mouse liver cell lines. It was evident that the 500 bp proximal promoter region contains active binding sites for Ets, Tcf, Ikarose and nuclear factor families of transcription factors. Electrophoretic mobility shift assays demonstrated that the minimal region of 134 bp PXR promoter was able to bind Ets-1 and β-catenin proteins. This result was further confirmed by chromatin immunoprecipitation analysis. In summary, the present study identified a promoter region of mouse PXR gene and the transregulatory factors responsible for PXR promoter activity. The results presented herein are expected to provide important cues to gain further insight into the regulatory mechanisms of PXR function. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0044126 |