Dispersal polymorphism and the speed of biological invasions

The speed at which biological range expansions occur has important consequences for the conservation management of species experiencing climate change and for invasion by exotic organisms. Rates of dispersal and population growth are known to affect the speed of invasion, but little is known about t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-07, Vol.7 (7), p.e40496
Hauptverfasser: Elliott, Elizabeth C, Cornell, Stephen J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The speed at which biological range expansions occur has important consequences for the conservation management of species experiencing climate change and for invasion by exotic organisms. Rates of dispersal and population growth are known to affect the speed of invasion, but little is known about the effect of having a community of dispersal phenotypes on the rate of range expansion. We use reaction-diffusion equations to model the invasion of a species with two dispersal phenotypes into a previously unoccupied landscape. These phenotypes differ in both their dispersal rate and population growth rate. We find that the presence of both phenotypes can result in faster range expansions than if only a single phenotype were present in the landscape. For biologically realistic parameters, the invasion can occur up to twice as fast as a result of this polymorphism. This has implications for predicting the speed of biological invasions, suggesting that speeds cannot just be predicted from looking at a single phenotype and that the full community of phenotypes needs to be taken into consideration.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0040496