The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes

Antifreeze proteins (AFPs) are a class of polypeptides that permit organismal survival in sub-freezing environments. The purpose of this study was to investigate the effect of AFP supplementation on immature mouse oocyte vitrification. Germinal vesicle-stage oocytes were vitrified using a two-step e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-05, Vol.7 (5), p.e37043
Hauptverfasser: Jo, Jun Woo, Jee, Byung Chul, Suh, Chang Suk, Kim, Seok Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antifreeze proteins (AFPs) are a class of polypeptides that permit organismal survival in sub-freezing environments. The purpose of this study was to investigate the effect of AFP supplementation on immature mouse oocyte vitrification. Germinal vesicle-stage oocytes were vitrified using a two-step exposure to equilibrium and vitrification solution in the presence or absence of 500 ng/mL of AFP III. After warming, oocyte survival, in vitro maturation, fertilization, and embryonic development up to the blastocyst stage were assessed. Spindle and chromosome morphology, membrane integrity, and the expression levels of several genes were assessed in in vitro matured oocytes. The rate of blastocyst formation was significantly higher and the number of caspase-positive blastomeres was significantly lower in the AFP-treated group compared with the untreated group. The proportion of oocytes with intact spindles/chromosomes and stable membranes was also significantly higher in the AFP group. The AFP group showed increased Mad2, Hook-1, Zar1, Zp1, and Bcl2 expression and lower Eg5, Zp2, Caspase6, and Rbm3 expression compared with the untreated group. Supplementation of the vitrification medium with AFP has a protective effect on immature mouse oocytes, promoting their resistance to chilling injury. AFPs may preserve spindle forming ability and membrane integrity at GV stage. The fertilization and subsequent developmental competence of oocytes may be associated with the modulation of Zar1, Zp1/Zp2, Bcl2, Caspase6, and Rbm3.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0037043