Regulation of neuronal APL-1 expression by cholesterol starvation

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP). While mutations in APP lead to the development of Familial Alzheimer's Disease (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-02, Vol.7 (2), p.e32038
Hauptverfasser: Wiese, Mary, Antebi, Adam, Zheng, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP). While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD), sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE) gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1), and lrp-1 (lipoprotein receptor-related protein 1), suggesting a potential interaction between apl-1 and cholesterol metabolism. Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0032038