Costs of inducible defence along a resource gradient

In addition to having constitutive defence traits, many organisms also respond to predation by phenotypic plasticity. In order for plasticity to be adaptive, induced defences should incur a benefit to the organism in, for example, decreased risk of predation. However, the production of defence trait...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-01, Vol.7 (1), p.e30467-e30467
Hauptverfasser: Brönmark, Christer, Lakowitz, Thomas, Nilsson, P Anders, Ahlgren, Johan, Lennartsdotter, Charlotte, Hollander, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In addition to having constitutive defence traits, many organisms also respond to predation by phenotypic plasticity. In order for plasticity to be adaptive, induced defences should incur a benefit to the organism in, for example, decreased risk of predation. However, the production of defence traits may include costs in fitness components such as growth, time to reproduction, or fecundity. To test the hypothesis that the expression of phenotypic plasticity incurs costs, we performed a common garden experiment with a freshwater snail, Radix balthica, a species known to change morphology in the presence of molluscivorous fish. We measured a number of predator-induced morphological and behavioural defence traits in snails that we reared in the presence or absence of chemical cues from fish. Further, we quantified the costs of plasticity in fitness characters related to fecundity and growth. Since plastic responses may be inhibited under limited resource conditions, we reared snails in different densities and thereby levels of competition. Snails exposed to predator cues grew rounder and thicker shells, traits confirmed to be adaptive in environments with fish. Defence traits were consistently expressed independent of density, suggesting strong selection from predatory molluscivorous fish. However, the expression of defence traits resulted in reduced growth rate and fecundity, particularly with limited resources. Our results suggest full defence in predator related traits regardless of resource availability, and costs of defence consequently paid in traits related to fitness.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0030467