Statistical inference for valued-edge networks: the generalized exponential random graph model

Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks based on both endogenous and exogenous factors, exponential random graph models are a ubiquitous means...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-01, Vol.7 (1), p.e30136-e30136
Hauptverfasser: Desmarais, Bruce A, Cranmer, Skyler J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks based on both endogenous and exogenous factors, exponential random graph models are a ubiquitous means of analysis. However, they are limited by an inability to model networks with valued edges. We address this problem by introducing a class of generalized exponential random graph models capable of modeling networks whose edges have continuous values (bounded or unbounded), thus greatly expanding the scope of networks applied researchers can subject to statistical analysis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0030136