The spinal cord expression of neuronal and inducible nitric oxide synthases and their contribution in the maintenance of neuropathic pain in mice

Nitric oxide generated by neuronal (NOS1), inducible (NOS2) or endothelial (NOS3) nitric oxide synthases contributes to pain processing, but the exact role of NOS1 and NOS2 in the maintenance of chronic peripheral neuropathic pain as well as the possible compensatory changes in their expression in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-12, Vol.5 (12), p.e14321-e14321
Hauptverfasser: Hervera, Arnau, Negrete, Roger, Leánez, Sergi, Martín-Campos, Jesús M, Pol, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitric oxide generated by neuronal (NOS1), inducible (NOS2) or endothelial (NOS3) nitric oxide synthases contributes to pain processing, but the exact role of NOS1 and NOS2 in the maintenance of chronic peripheral neuropathic pain as well as the possible compensatory changes in their expression in the spinal cord of wild type (WT) and NOS knockout (KO) mice at 21 days after total sciatic nerve ligation remains unknown. The mechanical and thermal allodynia as well as thermal hyperalgesia induced by sciatic nerve injury was evaluated in WT, NOS1-KO and NOS2-KO mice from 1 to 21 days after surgery. The mRNA and protein levels of NOS1, NOS2 and NOS3 in the spinal cord of WT and KO mice, at 21 days after surgery, were also assessed. Sciatic nerve injury led to a neuropathic syndrome in WT mice, in contrast to the abolished mechanical allodynia and thermal hyperalgesia as well as the decreased or suppressed thermal allodynia observed in NOS1-KO and NOS2-KO animals, respectively. Sciatic nerve injury also increases the spinal cord expression of NOS1 and NOS2 isoforms, but not of NOS3, in WT and NOS1-KO mice respectively. Moreover, the presence of NOS2 is required to increase the spinal cord expression of NOS1 whereas an increased NOS1 expression might avoid the up-regulation of NOS2 in the spinal cord of nerve injured WT mice. These data suggest that the increased spinal cord expression of NOS1, regulated by NOS2, might be responsible for the maintenance of chronic peripheral neuropathic pain in mice and propose these enzymes as interesting therapeutic targets for their treatment.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0014321