A genome-wide RNAi screen in Caenorhabditis elegans identifies the nicotinic acetylcholine receptor subunit ACR-7 as an antipsychotic drug target
We report a genome-wide RNA interference (RNAi) screen for Suppressors of Clozapine-induced Larval Arrest (scla genes) in Caenorhabditis elegans, the first genetic suppressor screen for antipsychotic drug (APD) targets in an animal. The screen identifies 40 suppressors, including the α-like nicotini...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2013-02, Vol.9 (2), p.e1003313 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a genome-wide RNA interference (RNAi) screen for Suppressors of Clozapine-induced Larval Arrest (scla genes) in Caenorhabditis elegans, the first genetic suppressor screen for antipsychotic drug (APD) targets in an animal. The screen identifies 40 suppressors, including the α-like nicotinic acetylcholine receptor (nAChR) homolog acr-7. We validate the requirement for acr-7 by showing that acr-7 knockout suppresses clozapine-induced larval arrest and that expression of a full-length translational GFP fusion construct rescues this phenotype. nAChR agonists phenocopy the developmental effects of clozapine, while nAChR antagonists partially block these effects. ACR-7 is strongly expressed in the pharynx, and clozapine inhibits pharyngeal pumping. acr-7 knockout and nAChR antagonists suppress clozapine-induced inhibition of pharyngeal pumping. These findings suggest that clozapine activates ACR-7 channels in pharyngeal muscle, leading to tetanus of pharyngeal muscle with consequent larval arrest. No APDs are known to activate nAChRs, but a number of studies indicate that α7-nAChR agonists may prove effective for the treatment of psychosis. α-like nAChR signaling is a mechanism through which clozapine may produce its therapeutic and/or toxic effects in humans, a hypothesis that could be tested following identification of the mammalian ortholog of C. elegans acr-7. |
---|---|
ISSN: | 1553-7404 1553-7390 1553-7404 |
DOI: | 10.1371/journal.pgen.1003313 |