Independent component analysis in spiking neurons

Although models based on independent component analysis (ICA) have been successful in explaining various properties of sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize such computation. Here, we propose a biologically plaus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2010-04, Vol.6 (4), p.e1000757-e1000757
Hauptverfasser: Savin, Cristina, Joshi, Prashant, Triesch, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although models based on independent component analysis (ICA) have been successful in explaining various properties of sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize such computation. Here, we propose a biologically plausible mechanism for ICA-like learning with spiking neurons. Our model combines spike-timing dependent plasticity and synaptic scaling with an intrinsic plasticity rule that regulates neuronal excitability to maximize information transmission. We show that a stochastically spiking neuron learns one independent component for inputs encoded either as rates or using spike-spike correlations. Furthermore, different independent components can be recovered, when the activity of different neurons is decorrelated by adaptive lateral inhibition.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1000757