Global entrainment of transcriptional systems to periodic inputs
This paper addresses the problem of providing mathematical conditions that allow one to ensure that biological networks, such as transcriptional systems, can be globally entrained to external periodic inputs. Despite appearing obvious at first, this is by no means a generic property of nonlinear dyn...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2010-04, Vol.6 (4), p.e1000739-e1000739 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the problem of providing mathematical conditions that allow one to ensure that biological networks, such as transcriptional systems, can be globally entrained to external periodic inputs. Despite appearing obvious at first, this is by no means a generic property of nonlinear dynamical systems. Through the use of contraction theory, a powerful tool from dynamical systems theory, it is shown that certain systems driven by external periodic signals have the property that all their solutions converge to a fixed limit cycle. General results are proved, and the properties are verified in the specific cases of models of transcriptional systems as well as constructs of interest in synthetic biology. A self-contained exposition of all needed results is given in the paper. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1000739 |