Targeted disruption of the PME-1 gene causes loss of demethylated PP2A and perinatal lethality in mice
Phosphoprotein phosphatase 2A (PP2A), a major serine-threonine protein phosphatase in eukaryotes, is an oligomeric protein comprised of structural (A) and catalytic (C) subunits to which a variable regulatory subunit (B) can associate. The C subunit contains a methyl ester post-translational modific...
Gespeichert in:
Veröffentlicht in: | PloS one 2008-07, Vol.3 (7), p.e2486-e2486 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphoprotein phosphatase 2A (PP2A), a major serine-threonine protein phosphatase in eukaryotes, is an oligomeric protein comprised of structural (A) and catalytic (C) subunits to which a variable regulatory subunit (B) can associate. The C subunit contains a methyl ester post-translational modification on its C-terminal leucine residue, which is removed by a specific methylesterase (PME-1). Methylesterification is thought to control the binding of different B subunits to AC dimers, but little is known about its physiological significance in vivo.
Here, we show that targeted disruption of the PME-1 gene causes perinatal lethality in mice, a phenotype that correlates with a virtually complete loss of the demethylated form of PP2A in the nervous system and peripheral tissues. Interestingly, PP2A catalytic activity over a peptide substrate was dramatically reduced in PME-1(-/-) tissues, which also displayed alterations in phosphoproteome content.
These findings suggest a role for the demethylated form of PP2A in maintenance of enzyme function and phosphorylation networks in vivo. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0002486 |