Large-scale differential proteome analysis in Plasmodium falciparum under drug treatment
Proteome studies contribute markedly to our understanding of parasite biology, host-parasite interactions, and mechanisms of drug action. For most antimalarial drugs neither mode of action nor mechanisms of resistance development are fully elucidated although this would be important prerequisites fo...
Gespeichert in:
Veröffentlicht in: | PloS one 2008-12, Vol.3 (12), p.e4098-e4098 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proteome studies contribute markedly to our understanding of parasite biology, host-parasite interactions, and mechanisms of drug action. For most antimalarial drugs neither mode of action nor mechanisms of resistance development are fully elucidated although this would be important prerequisites for successfully developing urgently required novel antimalarials. Here, we establish a large-scale quantitative proteomic approach to examine protein expression changes in trophozoite stages of the malarial parasite Plasmodium falciparum following chloroquine and artemisinin treatment. For this purpose SIL (stable isotope labeling) using (14)N-isoleucine and (13)C(6),(15)N(1)-isoleucine was optimized to obtain 99% atomic percent enrichment. Proteome fractionation with anion exchange chromatography was used to reduce sample complexity and increase quantitative coverage of protein expression. Tryptic peptides of subfractions were subjected to SCX/RP separation, measured by LC-MS/MS and quantified using the novel software tool Census. In drug treated parasites, we identified a total number of 1,253 proteins, thus increasing the overall number of proteins identified in the trophozoite stage by 30%. A relative quantification was obtained for more than 800 proteins. Under artemisinin and chloroquine treatment 41 and 38 proteins respectively were upregulated (>1.5) whereas 14 and 8 proteins were down-regulated ( |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0004098 |