The Metalloprotease Meprinβ Processes E-Cadherin and Weakens Intercellular Adhesion

Background Meprin (EC 3.4.24.18), an astacin-like metalloprotease, is expressed in the epithelium of the intestine and kidney tubules and has been related to cancer, but the mechanistic links are unknown. Methodology/Principal Findings We used MDCK and Caco-2 cells stably transfected with meprinα an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2008-05, Vol.3 (5), p.e2153
Hauptverfasser: Huguenin, Maya, Müller, Eliane J., Trachsel-Rösmann, Sandra, Oneda, Beatrice, Ambort, Daniel, Sterchi, Erwin E., Lottaz, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Meprin (EC 3.4.24.18), an astacin-like metalloprotease, is expressed in the epithelium of the intestine and kidney tubules and has been related to cancer, but the mechanistic links are unknown. Methodology/Principal Findings We used MDCK and Caco-2 cells stably transfected with meprinα and or meprinβ to establish models of renal and intestinal epithelial cells expressing this protease at physiological levels. In both models E-cadherin was cleaved, producing a cell-associated 97-kDa E-cadherin fragment, which was enhanced upon activation of the meprin zymogen and reduced in the presence of a meprin inhibitor. The cleavage site was localized in the extracellular domain adjacent to the plasma membrane. In vitro assays with purified components showed that the 97-kDa fragment was specifically generated by meprinβ, but not by ADAM-10 or MMP-7. Concomitantly with E-cadherin cleavage and degradation of the E-cadherin cytoplasmic tail, the plaque proteins β-catenin and plakoglobin were processed by an intracellular protease, whereas α-catenin, which does not bind directly to E-cadherin, remained intact. Using confocal microscopy, we observed a partial colocalization of meprinβ and E-cadherin at lateral membranes of incompletely polarized cells at preconfluent or early confluent stages. Meprinβ-expressing cells displayed a reduced strength of cell-cell contacts and a significantly lower tendency to form multicellular aggregates. Conclusions/Significance By identifying E-cadherin as a substrate for meprinβ in a cellular context, this study reveals a novel biological role of this protease in epithelial cells. Our results suggest a crucial role for meprinβ in the control of adhesiveness via cleavage of E-cadherin with potential implications in a wide range of biological processes including epithelial barrier function and cancer progression.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0002153