Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis

Tuberculosis remains a major health threat and its control depends on improved measures of prevention, diagnosis and treatment. Biosignatures can play a significant role in the development of novel intervention measures against TB and blood transcriptional profiling is increasingly exploited for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-10, Vol.6 (10), p.e26938-e26938
Hauptverfasser: Maertzdorf, Jeroen, Ota, Martin, Repsilber, Dirk, Mollenkopf, Hans J, Weiner, January, Hill, Philip C, Kaufmann, Stefan H E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tuberculosis remains a major health threat and its control depends on improved measures of prevention, diagnosis and treatment. Biosignatures can play a significant role in the development of novel intervention measures against TB and blood transcriptional profiling is increasingly exploited for their rational design. Such profiles also reveal fundamental biological mechanisms associated with the pathology of the disease. We have compared whole blood gene expression in TB patients, as well as in healthy infected and uninfected individuals in a cohort in The Gambia, West Africa and validated previously identified signatures showing high similarities of expression profiles among different cohorts. In this study, we applied a unique combination of classical gene expression analysis with pathway and functional association analysis integrated with intra-individual expression correlations. These analyses were employed for identification of new disease-associated gene signatures, identifying a network of Fc gamma receptor 1 signaling with correlating transcriptional activity as hallmark of gene expression in TB. Remarkable similarities to characteristic signatures in the autoimmune disease systemic lupus erythematosus (SLE) were observed. Functional gene clusters of immunoregulatory interactions involving the JAK-STAT pathway; sensing of microbial patterns by Toll-like receptors and IFN-signaling provide detailed insights into the dysregulation of critical immune processes in TB, involving active expression of both pro-inflammatory and immunoregulatory systems. We conclude that transcriptomics (i) provides a robust system for identification and validation of biosignatures for TB and (ii) application of integrated analysis tools yields novel insights into functional networks underlying TB pathogenesis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0026938