Robust and task-independent spatial profile of the visual word form activation in fusiform cortex

Written language represents a special category of visual information. There is strong evidence for the existence of a cortical region in ventral occipitotemporal cortex for processing the visual form of written words. However, due to inconsistent findings obtained with different tasks, the level of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-10, Vol.6 (10), p.e26310-e26310
Hauptverfasser: Ma, Lifei, Jiang, Yi, Bai, Jian'e, Gong, Qiyong, Liu, Haicheng, Chen, Hsuan-Chih, He, Sheng, Weng, Xuchu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Written language represents a special category of visual information. There is strong evidence for the existence of a cortical region in ventral occipitotemporal cortex for processing the visual form of written words. However, due to inconsistent findings obtained with different tasks, the level of specialization and selectivity of this so called visual word form area (VWFA) remains debated. In this study, we examined category selectivity for Chinese characters, a non-alphabetic script, in native Chinese readers. In contrast to traditional approaches of examining response levels in a restricted predefined region of interest (ROI), a detailed distribution of the BOLD signal across the mid-fusiform cortical surface and the spatial patterns of responses to Chinese characters were obtained. Results show that a region tuned for Chinese characters could be consistently found in the lateral part of the left fusiform gyrus in Chinese readers, and this spatial pattern of selectivity for written words was not influenced by top-down tasks such as phonological or semantic modulations. These results provide strong support for the robust spatial coding of category selective response in the mid-fusiform cortex, and demonstrate the utility of the spatial distribution analysis as a more meaningful approach to examine functional magnetic resonance imaging (fMRI) data.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0026310