Practical tools to implement massive parallel pyrosequencing of PCR products in next generation molecular diagnostics

Despite improvements in terms of sequence quality and price per basepair, Sanger sequencing remains restricted to screening of individual disease genes. The development of massively parallel sequencing (MPS) technologies heralded an era in which molecular diagnostics for multigenic disorders becomes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-09, Vol.6 (9), p.e25531-e25531
Hauptverfasser: De Leeneer, Kim, De Schrijver, Joachim, Clement, Lieven, Baetens, Machteld, Lefever, Steve, De Keulenaer, Sarah, Van Criekinge, Wim, Deforce, Dieter, Van Nieuwerburgh, Filip, Bekaert, Sofie, Pattyn, Filip, De Wilde, Bram, Coucke, Paul, Vandesompele, Jo, Claes, Kathleen, Hellemans, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite improvements in terms of sequence quality and price per basepair, Sanger sequencing remains restricted to screening of individual disease genes. The development of massively parallel sequencing (MPS) technologies heralded an era in which molecular diagnostics for multigenic disorders becomes reality. Here, we outline different PCR amplification based strategies for the screening of a multitude of genes in a patient cohort. We performed a thorough evaluation in terms of set-up, coverage and sequencing variants on the data of 10 GS-FLX experiments (over 200 patients). Crucially, we determined the actual coverage that is required for reliable diagnostic results using MPS, and provide a tool to calculate the number of patients that can be screened in a single run. Finally, we provide an overview of factors contributing to false negative or false positive mutation calls and suggest ways to maximize sensitivity and specificity, both important in a routine setting. By describing practical strategies for screening of multigenic disorders in a multitude of samples and providing answers to questions about minimum required coverage, the number of patients that can be screened in a single run and the factors that may affect sensitivity and specificity we hope to facilitate the implementation of MPS technology in molecular diagnostics.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0025531