Understanding TR binding to pMHC complexes: how does a TR scan many pMHC complexes yet preferentially bind to one
Understanding the basis of the binding of a T cell receptor (TR) to the peptide-MHC (pMHC) complex is essential due to the vital role it plays in adaptive immune response. We describe the use of computed binding (free) energy (BE), TR paratope, pMHC epitope, molecular surface electrostatic potential...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-02, Vol.6 (2), p.e17194-e17194 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding the basis of the binding of a T cell receptor (TR) to the peptide-MHC (pMHC) complex is essential due to the vital role it plays in adaptive immune response. We describe the use of computed binding (free) energy (BE), TR paratope, pMHC epitope, molecular surface electrostatic potential (MSEP) and calculated TR docking angle (θ) to analyse 61 TR/pMHC crystallographic structures to comprehend TR/pMHC interaction. In doing so, we have successfully demonstrated a novel/rational approach for θ calculation, obtained a linear correlation between BE and θ without any "codon" or amino acid preference, provided an explanation for TR ability to scan many pMHC ligands yet specifically bind one, proposed a mechanism for pMHC recognition by TR leading to T cell activation and illustrated the importance of the peptide in determining TR specificity, challenging the "germline bias" theory. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0017194 |