Perfluorooctanoic acid for shotgun proteomics

Here, we describe the novel use of a volatile surfactant, perfluorooctanoic acid (PFOA), for shotgun proteomics. PFOA was found to solubilize membrane proteins as effectively as sodium dodecyl sulfate (SDS). PFOA concentrations up to 0.5% (w/v) did not significantly inhibit trypsin activity. The uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-12, Vol.5 (12), p.e15332-e15332
Hauptverfasser: Kadiyala, Chandra Sekhar Rao, Tomechko, Sara E, Miyagi, Masaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we describe the novel use of a volatile surfactant, perfluorooctanoic acid (PFOA), for shotgun proteomics. PFOA was found to solubilize membrane proteins as effectively as sodium dodecyl sulfate (SDS). PFOA concentrations up to 0.5% (w/v) did not significantly inhibit trypsin activity. The unique features of PFOA allowed us to develop a single-tube shotgun proteomics method that used all volatile chemicals that could easily be removed by evaporation prior to mass spectrometry analysis. The experimental procedures involved: 1) extraction of proteins in 2% PFOA; 2) reduction of cystine residues with triethyl phosphine and their S-alkylation with iodoethanol; 3) trypsin digestion of proteins in 0.5% PFOA; 4) removal of PFOA by evaporation; and 5) LC-MS/MS analysis of the resulting peptides. The general applicability of the method was demonstrated with the membrane preparation of photoreceptor outer segments. We identified 75 proteins from 1 µg of the tryptic peptides in a single, 1-hour, LC-MS/MS run. About 67% of the proteins identified were classified as membrane proteins. We also demonstrate that a proteolytic (18)O labeling procedure can be incorporated after the PFOA removal step for quantitative proteomic experiments. The present method does not require sample clean-up devices such as solid-phase extractions and membrane filters, so no proteins/peptides are lost in any experimental steps. Thus, this single-tube shotgun proteomics method overcomes the major drawbacks of surfactant use in proteomic experiments.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0015332