What's new is old: resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH
Leptothrix ochracea is a common inhabitant of freshwater iron seeps and iron-rich wetlands. Its defining characteristic is copious production of extracellular sheaths encrusted with iron oxyhydroxides. Surprisingly, over 90% of these sheaths are empty, hence, what appears to be an abundant populatio...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-03, Vol.6 (3), p.e17769-e17769 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Leptothrix ochracea is a common inhabitant of freshwater iron seeps and iron-rich wetlands. Its defining characteristic is copious production of extracellular sheaths encrusted with iron oxyhydroxides. Surprisingly, over 90% of these sheaths are empty, hence, what appears to be an abundant population of iron-oxidizing bacteria, consists of relatively few cells. Because L. ochracea has proven difficult to cultivate, its identification is based solely on habitat preference and morphology. We utilized cultivation-independent techniques to resolve this long-standing enigma. By selecting the actively growing edge of a Leptothrix-containing iron mat, a conventional SSU rRNA gene clone library was obtained that had 29 clones (42% of the total library) related to the Leptothrix/Sphaerotilus group (≤96% identical to cultured representatives). A pyrotagged library of the V4 hypervariable region constructed from the bulk mat showed that 7.2% of the total sequences also belonged to the Leptothrix/Sphaerotilus group. Sorting of individual L. ochracea sheaths, followed by whole genome amplification (WGA) and PCR identified a SSU rRNA sequence that clustered closely with the putative Leptothrix clones and pyrotags. Using these data, a fluorescence in-situ hybridization (FISH) probe, Lepto175, was designed that bound to ensheathed cells. Quantitative use of this probe demonstrated that up to 35% of microbial cells in an actively accreting iron mat were L. ochracea. The SSU rRNA gene of L. ochracea shares 96% homology with its closet cultivated relative, L. cholodnii, This establishes that L. ochracea is indeed related to this group of morphologically similar, filamentous, sheathed microorganisms. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0017769 |