Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10)

One of the major mechanisms that could produce resistance to antineoplastic drugs in cancer cells is the ATP binding cassette (ABC) transporters. The ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-10, Vol.4 (10), p.e7520
Hauptverfasser: Shen, Tong, Kuang, Ye-Hong, Ashby, Charles R, Lei, Yu, Chen, Angel, Zhou, Ying, Chen, Xiang, Tiwari, Amit K, Hopper-Borge, Elizabeth, Ouyang, Jiangyong, Chen, Zhe-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the major mechanisms that could produce resistance to antineoplastic drugs in cancer cells is the ATP binding cassette (ABC) transporters. The ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering the cytotoxic activity of antineoplastic drugs. One of these transporters, the multiple resistant protein 7 (MRP7, ABCC10), has recently been shown to produce resistance to antineoplastic drugs by increasing the efflux of paclitaxel. In this study, we examined the effects of BCR-Abl tyrosine kinase inhibitors imatinib, nilotinib and dasatinib on the activity and expression of MRP7 in HEK293 cells transfected with MRP7, designated HEK-MRP7-2. We report for the first time that imatinib and nilotinib reversed MRP7-mediated multidrug resistance. Our MTT assay results indicated that MRP7 expression in HEK-MRP7-2 cells was not significantly altered by incubation with 5 microM of imatinib or nilotinib for up to 72 hours. In addition, imatinib and nilotinib (1-5 microM) produced a significant concentration-dependent reversal of MRP7-mediated multidrug resistance by enhancing the sensitivity of HEK-MRP7-2 cells to paclitaxel and vincristine. Imatinib and nilotinib, at 5 microM, significantly increased the accumulation of [(3)H]-paclitaxel in HEK-MRP7-2 cells. The incubation of the HEK-MRP7-2 cells with imatinib or nilotinib (5 microM) also significantly inhibited the efflux of paclitaxel. Imatinib and nilotinib reverse MRP7-mediated paclitaxel resistance, most likely due to their inhibition of the efflux of paclitaxel via MRP7. These findings suggest that imatinib or nilotinib, in combination with other antineoplastic drugs, may be useful in the treatment of certain resistant cancers.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0007520