Absence of ERRα in Female Mice Confers Resistance to Bone Loss Induced by Age or Estrogen-Deficiency

Background ERRα is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRα is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-11, Vol.4 (11), p.e7942
Hauptverfasser: Teyssier, Catherine, Gallet, Marlène, Rabier, Bénédicte, Monfoulet, Laurent, Dine, Julien, Macari, Claire, Espallergues, Julie, Horard, Béatrice, Giguère, Vincent, Cohen-Solal, Martine, Chassande, Olivier, Vanacker, Jean-Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background ERRα is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRα is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRα may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. Methods/Principal Findings In this report, we have determined the in vivo effect of ERRα on bone, using knock-out mice. Relative to wild type animals, female ERRαKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRαKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRαKO bone marrow, we also show that ERRα acts as an inhibitor of osteoblast differentiation. Conclusion/Significance Down-regulating ERRα could thus be beneficial against osteoporosis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0007942