Detection, analysis and clinical validation of chromosomal aberrations by multiplex ligation-dependent probe amplification in chronic leukemia
Current diagnostic screening strategies based on karyotyping or fluorescent in situ hybridization (FISH) for detection of chromosomal abnormalities in chronic lymphocytic leukemia (CLL) are laborious, time-consuming, costly, and have limitations in resolution. Multiplex ligation-dependent probe ampl...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-10, Vol.5 (10), p.e15407-e15407 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current diagnostic screening strategies based on karyotyping or fluorescent in situ hybridization (FISH) for detection of chromosomal abnormalities in chronic lymphocytic leukemia (CLL) are laborious, time-consuming, costly, and have limitations in resolution. Multiplex ligation-dependent probe amplification (MLPA) can simultaneously detect copy number changes of multiple loci in one simple PCR reaction, making it an attractive alternative to FISH. To enhance the clinical robustness and further harness MLPA technology for routine laboratory operations, we have developed and validated a protocol for comprehensive, automatic data analysis and interpretation. A training set of 50 normal samples was used to establish reference ranges for each individual probe, for the calling of statistically significant copy number changes. The maximum normal ranges of 2 and 3 standard deviations (SD) are distributed between 0.82 and 1.18 (Mean ± 2SD, 95% CI, P = 0.05), and between 0.73 and 1.27 (Mean ± 3SD, 99% CI, P = 0.01), respectively. We found an excellent correlation between MLPA and FISH with 93.6% concordance (P |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0015407 |