Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics

Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we exami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-02, Vol.5 (2), p.e9306
Hauptverfasser: Calmettes, Guillaume, Deschodt-Arsac, Véronique, Gouspillou, Gilles, Miraux, Sylvain, Muller, Bernard, Franconi, Jean-Michel, Thiaudiere, Eric, Diolez, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e9306
container_title PloS one
container_volume 5
creator Calmettes, Guillaume
Deschodt-Arsac, Véronique
Gouspillou, Gilles
Miraux, Sylvain
Muller, Bernard
Franconi, Jean-Michel
Thiaudiere, Eric
Diolez, Philippe
description Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced by chronic hypoxia (CH) in the higher tolerance to oxygen deprivation. Swiss mice were exposed to a simulated altitude of 5500 m in a barochamber for 21 days. Isolated perfused hearts were used to study the effects of a decreased oxygen concentration in the perfusate on contractile performance (RPP) and phosphocreatine (PCr) concentration (assessed by (31)P-NMR), and to describe the integrated changes in cardiac energetics regulation by using Modular Control Analysis (MoCA). Oxygen reduction induced a concomitant decrease in RPP (-46%) and in [PCr] (-23%) in Control hearts while CH hearts energetics was unchanged. MoCA demonstrated that this adaptation to hypoxia is the direct consequence of the higher responsiveness (elasticity) of ATP production of CH hearts compared with Controls (-1.88+/-0.38 vs -0.89+/-0.41, p
doi_str_mv 10.1371/journal.pone.0009306
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289258032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473914538</galeid><doaj_id>oai_doaj_org_article_d66182112a9f40faa3643a8b34278c3f</doaj_id><sourcerecordid>A473914538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-be4cebb5f0c12af5b72c7fc9c946d44b2bc1bf8d5df941fb3e6066136bd24d3d3</originalsourceid><addsrcrecordid>eNqNk0tr3DAQx01padK036C0hkJLD7vVa2X7Egihj4VAoK-rkPXwarElR7JD9tt3tuuEdcmh-DBG85v_jEYzWfYaoyWmBf60DWP0sl32wZslQqiiiD_JTnFFyYITRJ8e_Z9kL1LaIrSiJefPsxOCcME4LU6zm3XXx3BrdG68ic0uT2Pft7s8mmZs5eCCz53P1SYG71S-2fXhDmwXxmRyFUY_mCjVkCaPXDivRwVqsgUPWCWjdlId1M3gVHqZPbOyTebVZM-yX18-_7z8tri6_rq-vLhaKF7hYVEbpkxdryxSmEi7qguiCqsqVTGuGatJrXBtS73StmLY1tRwxDmmvNaEaarpWfb2oNu3IYmpW0lgUlZkVSJKgFgfCB3kVvTRdTLuRJBO_D0IsREyQsmtERqkS4KhksoyZKWknFFZ1pSRolTUgtb5lG2sO6OV8UOU7Ux07vFuI5pwK0hJaFEyEPgwCcRwM5o0iM4lZdpWegPdFgWkqlDFCyDf_UM-frmJaiTU77wNkFbtNcUFK2iFGQwDUMtHKPi06ZyCybIOzmcBH2cBwAzmbmjkmJJY__j-_-z17zn7_ojdGJifTQrtuJ_ANAfZAVQxpBSNfegxRmK_GPfdEPvFENNiQNib4_d5CLrfBPoHtnkLfA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289258032</pqid></control><display><type>article</type><title>Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Calmettes, Guillaume ; Deschodt-Arsac, Véronique ; Gouspillou, Gilles ; Miraux, Sylvain ; Muller, Bernard ; Franconi, Jean-Michel ; Thiaudiere, Eric ; Diolez, Philippe</creator><contributor>Schwartz, Arnold</contributor><creatorcontrib>Calmettes, Guillaume ; Deschodt-Arsac, Véronique ; Gouspillou, Gilles ; Miraux, Sylvain ; Muller, Bernard ; Franconi, Jean-Michel ; Thiaudiere, Eric ; Diolez, Philippe ; Schwartz, Arnold</creatorcontrib><description>Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced by chronic hypoxia (CH) in the higher tolerance to oxygen deprivation. Swiss mice were exposed to a simulated altitude of 5500 m in a barochamber for 21 days. Isolated perfused hearts were used to study the effects of a decreased oxygen concentration in the perfusate on contractile performance (RPP) and phosphocreatine (PCr) concentration (assessed by (31)P-NMR), and to describe the integrated changes in cardiac energetics regulation by using Modular Control Analysis (MoCA). Oxygen reduction induced a concomitant decrease in RPP (-46%) and in [PCr] (-23%) in Control hearts while CH hearts energetics was unchanged. MoCA demonstrated that this adaptation to hypoxia is the direct consequence of the higher responsiveness (elasticity) of ATP production of CH hearts compared with Controls (-1.88+/-0.38 vs -0.89+/-0.41, p&lt;0.01) measured under low oxygen perfusion. This higher elasticity induces an improved response of energy supply to cellular energy demand. The result is the conservation of a healthy control pattern of contraction in CH hearts, whereas Control hearts are severely controlled by energy supply. As suggested by the present study, the mechanisms responsible for this increase in elasticity and the consequent improved ability of CH heart metabolism to respond to oxygen deprivation could participate to limit the damages induced by hypoxia.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0009306</identifier><identifier>PMID: 20174637</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Animals ; Biochemistry/Theory and Simulation ; Bioenergetics ; Body Weight ; Cardiovascular Disorders ; Cardiovascular Disorders/Heart Failure ; Chronic Disease ; Computational Biology/Systems Biology ; Conservation ; Contraction ; Control ; Deprivation ; Elasticity ; Energy conservation ; Energy demand ; Energy law ; Energy Metabolism - drug effects ; Energy Metabolism - physiology ; Female ; Heart ; Heart - drug effects ; Heart - physiopathology ; Heart diseases ; Heart failure ; Hypotheses ; Hypoxia ; Hypoxia - physiopathology ; In Vitro Techniques ; Ischemia ; Magnetic Resonance Spectroscopy ; Mathematical models ; Metabolism ; Metabolites ; Mice ; Mitochondria, Heart - metabolism ; Muscle contraction ; Musculoskeletal system ; Myocardial Contraction - drug effects ; Myocardium - metabolism ; Myocardium - pathology ; NMR ; Nuclear magnetic resonance ; Organ Size ; Oxygen ; Oxygen - metabolism ; Oxygen - pharmacology ; Perfusion ; Phosphocreatine ; Phosphocreatine - metabolism ; Physiological aspects ; Physiology ; Physiology/Cardiovascular Physiology and Circulation ; Physiology/Integrative Physiology ; Pulmonary hypertension ; Regulation ; Rodents ; Spectrum analysis ; Studies</subject><ispartof>PloS one, 2010-02, Vol.5 (2), p.e9306</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Calmettes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Calmettes et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-be4cebb5f0c12af5b72c7fc9c946d44b2bc1bf8d5df941fb3e6066136bd24d3d3</citedby><cites>FETCH-LOGICAL-c691t-be4cebb5f0c12af5b72c7fc9c946d44b2bc1bf8d5df941fb3e6066136bd24d3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823784/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823784/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20174637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schwartz, Arnold</contributor><creatorcontrib>Calmettes, Guillaume</creatorcontrib><creatorcontrib>Deschodt-Arsac, Véronique</creatorcontrib><creatorcontrib>Gouspillou, Gilles</creatorcontrib><creatorcontrib>Miraux, Sylvain</creatorcontrib><creatorcontrib>Muller, Bernard</creatorcontrib><creatorcontrib>Franconi, Jean-Michel</creatorcontrib><creatorcontrib>Thiaudiere, Eric</creatorcontrib><creatorcontrib>Diolez, Philippe</creatorcontrib><title>Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced by chronic hypoxia (CH) in the higher tolerance to oxygen deprivation. Swiss mice were exposed to a simulated altitude of 5500 m in a barochamber for 21 days. Isolated perfused hearts were used to study the effects of a decreased oxygen concentration in the perfusate on contractile performance (RPP) and phosphocreatine (PCr) concentration (assessed by (31)P-NMR), and to describe the integrated changes in cardiac energetics regulation by using Modular Control Analysis (MoCA). Oxygen reduction induced a concomitant decrease in RPP (-46%) and in [PCr] (-23%) in Control hearts while CH hearts energetics was unchanged. MoCA demonstrated that this adaptation to hypoxia is the direct consequence of the higher responsiveness (elasticity) of ATP production of CH hearts compared with Controls (-1.88+/-0.38 vs -0.89+/-0.41, p&lt;0.01) measured under low oxygen perfusion. This higher elasticity induces an improved response of energy supply to cellular energy demand. The result is the conservation of a healthy control pattern of contraction in CH hearts, whereas Control hearts are severely controlled by energy supply. As suggested by the present study, the mechanisms responsible for this increase in elasticity and the consequent improved ability of CH heart metabolism to respond to oxygen deprivation could participate to limit the damages induced by hypoxia.</description><subject>Adaptation</subject><subject>Animals</subject><subject>Biochemistry/Theory and Simulation</subject><subject>Bioenergetics</subject><subject>Body Weight</subject><subject>Cardiovascular Disorders</subject><subject>Cardiovascular Disorders/Heart Failure</subject><subject>Chronic Disease</subject><subject>Computational Biology/Systems Biology</subject><subject>Conservation</subject><subject>Contraction</subject><subject>Control</subject><subject>Deprivation</subject><subject>Elasticity</subject><subject>Energy conservation</subject><subject>Energy demand</subject><subject>Energy law</subject><subject>Energy Metabolism - drug effects</subject><subject>Energy Metabolism - physiology</subject><subject>Female</subject><subject>Heart</subject><subject>Heart - drug effects</subject><subject>Heart - physiopathology</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Hypotheses</subject><subject>Hypoxia</subject><subject>Hypoxia - physiopathology</subject><subject>In Vitro Techniques</subject><subject>Ischemia</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Muscle contraction</subject><subject>Musculoskeletal system</subject><subject>Myocardial Contraction - drug effects</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organ Size</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen - pharmacology</subject><subject>Perfusion</subject><subject>Phosphocreatine</subject><subject>Phosphocreatine - metabolism</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Physiology/Cardiovascular Physiology and Circulation</subject><subject>Physiology/Integrative Physiology</subject><subject>Pulmonary hypertension</subject><subject>Regulation</subject><subject>Rodents</subject><subject>Spectrum analysis</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAQx01padK036C0hkJLD7vVa2X7Egihj4VAoK-rkPXwarElR7JD9tt3tuuEdcmh-DBG85v_jEYzWfYaoyWmBf60DWP0sl32wZslQqiiiD_JTnFFyYITRJ8e_Z9kL1LaIrSiJefPsxOCcME4LU6zm3XXx3BrdG68ic0uT2Pft7s8mmZs5eCCz53P1SYG71S-2fXhDmwXxmRyFUY_mCjVkCaPXDivRwVqsgUPWCWjdlId1M3gVHqZPbOyTebVZM-yX18-_7z8tri6_rq-vLhaKF7hYVEbpkxdryxSmEi7qguiCqsqVTGuGatJrXBtS73StmLY1tRwxDmmvNaEaarpWfb2oNu3IYmpW0lgUlZkVSJKgFgfCB3kVvTRdTLuRJBO_D0IsREyQsmtERqkS4KhksoyZKWknFFZ1pSRolTUgtb5lG2sO6OV8UOU7Ux07vFuI5pwK0hJaFEyEPgwCcRwM5o0iM4lZdpWegPdFgWkqlDFCyDf_UM-frmJaiTU77wNkFbtNcUFK2iFGQwDUMtHKPi06ZyCybIOzmcBH2cBwAzmbmjkmJJY__j-_-z17zn7_ojdGJifTQrtuJ_ANAfZAVQxpBSNfegxRmK_GPfdEPvFENNiQNib4_d5CLrfBPoHtnkLfA</recordid><startdate>20100218</startdate><enddate>20100218</enddate><creator>Calmettes, Guillaume</creator><creator>Deschodt-Arsac, Véronique</creator><creator>Gouspillou, Gilles</creator><creator>Miraux, Sylvain</creator><creator>Muller, Bernard</creator><creator>Franconi, Jean-Michel</creator><creator>Thiaudiere, Eric</creator><creator>Diolez, Philippe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100218</creationdate><title>Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics</title><author>Calmettes, Guillaume ; Deschodt-Arsac, Véronique ; Gouspillou, Gilles ; Miraux, Sylvain ; Muller, Bernard ; Franconi, Jean-Michel ; Thiaudiere, Eric ; Diolez, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-be4cebb5f0c12af5b72c7fc9c946d44b2bc1bf8d5df941fb3e6066136bd24d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation</topic><topic>Animals</topic><topic>Biochemistry/Theory and Simulation</topic><topic>Bioenergetics</topic><topic>Body Weight</topic><topic>Cardiovascular Disorders</topic><topic>Cardiovascular Disorders/Heart Failure</topic><topic>Chronic Disease</topic><topic>Computational Biology/Systems Biology</topic><topic>Conservation</topic><topic>Contraction</topic><topic>Control</topic><topic>Deprivation</topic><topic>Elasticity</topic><topic>Energy conservation</topic><topic>Energy demand</topic><topic>Energy law</topic><topic>Energy Metabolism - drug effects</topic><topic>Energy Metabolism - physiology</topic><topic>Female</topic><topic>Heart</topic><topic>Heart - drug effects</topic><topic>Heart - physiopathology</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Hypotheses</topic><topic>Hypoxia</topic><topic>Hypoxia - physiopathology</topic><topic>In Vitro Techniques</topic><topic>Ischemia</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Muscle contraction</topic><topic>Musculoskeletal system</topic><topic>Myocardial Contraction - drug effects</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organ Size</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen - pharmacology</topic><topic>Perfusion</topic><topic>Phosphocreatine</topic><topic>Phosphocreatine - metabolism</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Physiology/Cardiovascular Physiology and Circulation</topic><topic>Physiology/Integrative Physiology</topic><topic>Pulmonary hypertension</topic><topic>Regulation</topic><topic>Rodents</topic><topic>Spectrum analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calmettes, Guillaume</creatorcontrib><creatorcontrib>Deschodt-Arsac, Véronique</creatorcontrib><creatorcontrib>Gouspillou, Gilles</creatorcontrib><creatorcontrib>Miraux, Sylvain</creatorcontrib><creatorcontrib>Muller, Bernard</creatorcontrib><creatorcontrib>Franconi, Jean-Michel</creatorcontrib><creatorcontrib>Thiaudiere, Eric</creatorcontrib><creatorcontrib>Diolez, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calmettes, Guillaume</au><au>Deschodt-Arsac, Véronique</au><au>Gouspillou, Gilles</au><au>Miraux, Sylvain</au><au>Muller, Bernard</au><au>Franconi, Jean-Michel</au><au>Thiaudiere, Eric</au><au>Diolez, Philippe</au><au>Schwartz, Arnold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-02-18</date><risdate>2010</risdate><volume>5</volume><issue>2</issue><spage>e9306</spage><pages>e9306-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced by chronic hypoxia (CH) in the higher tolerance to oxygen deprivation. Swiss mice were exposed to a simulated altitude of 5500 m in a barochamber for 21 days. Isolated perfused hearts were used to study the effects of a decreased oxygen concentration in the perfusate on contractile performance (RPP) and phosphocreatine (PCr) concentration (assessed by (31)P-NMR), and to describe the integrated changes in cardiac energetics regulation by using Modular Control Analysis (MoCA). Oxygen reduction induced a concomitant decrease in RPP (-46%) and in [PCr] (-23%) in Control hearts while CH hearts energetics was unchanged. MoCA demonstrated that this adaptation to hypoxia is the direct consequence of the higher responsiveness (elasticity) of ATP production of CH hearts compared with Controls (-1.88+/-0.38 vs -0.89+/-0.41, p&lt;0.01) measured under low oxygen perfusion. This higher elasticity induces an improved response of energy supply to cellular energy demand. The result is the conservation of a healthy control pattern of contraction in CH hearts, whereas Control hearts are severely controlled by energy supply. As suggested by the present study, the mechanisms responsible for this increase in elasticity and the consequent improved ability of CH heart metabolism to respond to oxygen deprivation could participate to limit the damages induced by hypoxia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20174637</pmid><doi>10.1371/journal.pone.0009306</doi><tpages>e9306</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-02, Vol.5 (2), p.e9306
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289258032
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptation
Animals
Biochemistry/Theory and Simulation
Bioenergetics
Body Weight
Cardiovascular Disorders
Cardiovascular Disorders/Heart Failure
Chronic Disease
Computational Biology/Systems Biology
Conservation
Contraction
Control
Deprivation
Elasticity
Energy conservation
Energy demand
Energy law
Energy Metabolism - drug effects
Energy Metabolism - physiology
Female
Heart
Heart - drug effects
Heart - physiopathology
Heart diseases
Heart failure
Hypotheses
Hypoxia
Hypoxia - physiopathology
In Vitro Techniques
Ischemia
Magnetic Resonance Spectroscopy
Mathematical models
Metabolism
Metabolites
Mice
Mitochondria, Heart - metabolism
Muscle contraction
Musculoskeletal system
Myocardial Contraction - drug effects
Myocardium - metabolism
Myocardium - pathology
NMR
Nuclear magnetic resonance
Organ Size
Oxygen
Oxygen - metabolism
Oxygen - pharmacology
Perfusion
Phosphocreatine
Phosphocreatine - metabolism
Physiological aspects
Physiology
Physiology/Cardiovascular Physiology and Circulation
Physiology/Integrative Physiology
Pulmonary hypertension
Regulation
Rodents
Spectrum analysis
Studies
title Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20energy%20supply%20regulation%20in%20chronic%20hypoxic%20mouse%20counteracts%20hypoxia-induced%20altered%20cardiac%20energetics&rft.jtitle=PloS%20one&rft.au=Calmettes,%20Guillaume&rft.date=2010-02-18&rft.volume=5&rft.issue=2&rft.spage=e9306&rft.pages=e9306-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0009306&rft_dat=%3Cgale_plos_%3EA473914538%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289258032&rft_id=info:pmid/20174637&rft_galeid=A473914538&rft_doaj_id=oai_doaj_org_article_d66182112a9f40faa3643a8b34278c3f&rfr_iscdi=true