Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics
Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we exami...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-02, Vol.5 (2), p.e9306 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced by chronic hypoxia (CH) in the higher tolerance to oxygen deprivation.
Swiss mice were exposed to a simulated altitude of 5500 m in a barochamber for 21 days. Isolated perfused hearts were used to study the effects of a decreased oxygen concentration in the perfusate on contractile performance (RPP) and phosphocreatine (PCr) concentration (assessed by (31)P-NMR), and to describe the integrated changes in cardiac energetics regulation by using Modular Control Analysis (MoCA). Oxygen reduction induced a concomitant decrease in RPP (-46%) and in [PCr] (-23%) in Control hearts while CH hearts energetics was unchanged. MoCA demonstrated that this adaptation to hypoxia is the direct consequence of the higher responsiveness (elasticity) of ATP production of CH hearts compared with Controls (-1.88+/-0.38 vs -0.89+/-0.41, p |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0009306 |