The M/GP5 Glycoprotein Complex of Porcine Reproductive and Respiratory Syndrome Virus Binds the Sialoadhesin Receptor in a Sialic Acid-Dependent Manner

The porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine health worldwide and is considered the most significant viral disease in the swine industry today. In past years, studies on the entry of the virus into its host cell have led to the identification of a number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2010-01, Vol.6 (1), p.e1000730
Hauptverfasser: Van Breedam, Wander, Van Gorp, Hanne, Zhang, Jiquan Q., Crocker, Paul R., Delputte, Peter L., Nauwynck, Hans J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine health worldwide and is considered the most significant viral disease in the swine industry today. In past years, studies on the entry of the virus into its host cell have led to the identification of a number of essential virus receptors and entry mediators. However, viral counterparts for these molecules have remained elusive and this has made rational development of new generation vaccines impossible. The main objective of this study was to identify the viral counterparts for sialoadhesin, a crucial PRRSV receptor on macrophages. For this purpose, a soluble form of sialoadhesin was constructed and validated. The soluble sialoadhesin could bind PRRSV in a sialic acid-dependent manner and could neutralize PRRSV infection of macrophages, thereby confirming the role of sialoadhesin as an essential PRRSV receptor on macrophages. Although sialic acids are present on the GP 3 , GP 4 and GP 5 envelope glycoproteins, only the M/GP 5 glycoprotein complex of PRRSV was identified as a ligand for sialoadhesin. The interaction was found to be dependent on the sialic acid binding capacity of sialoadhesin and on the presence of sialic acids on GP 5 . These findings not only contribute to a better understanding of PRRSV biology, but the knowledge and tools generated in this study also hold the key to the development of a new generation of PRRSV vaccines. The porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine health worldwide. The virus specifically targets subpopulations of macrophages, central players in the immune system, and can persist in animals for extended periods of time due to a hampered immunity. At present, no vaccines are available that are both safe and effective and it is clear that a more rational vaccine design is needed to solve this problem. Therefore, advancing our fundamental understanding of PRRSV biology is crucial. The macrophage-specific lectin sialoadhesin is a crucial viral receptor on macrophages and although its role in PRRSV infection is well documented, its viral counterparts have remained unknown. Using a soluble form of sialoadhesin, we identified the M/GP 5 glycoprotein complex of PRRSV as the ligand for sialoadhesin and found this ligand-receptor interaction to be critically dependent on the lectin activity of sialoadhesin and on sialic acids on the GP 5 glycoprotein. These data represent a major breakthrough in
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1000730