Control of parasitophorous vacuole expansion by LYST/Beige restricts the intracellular growth of Leishmania amazonensis

The intracellular protozoan Leishmania replicates in parasitophorous vacuoles (PV) that share many features with late endosomes/lysosomes. L. amazonensis PVs expand markedly during infections, but the impact of PV size on parasite intracellular survival is still unknown. Here we show that host cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2008-10, Vol.4 (10), p.e1000179-e1000179
Hauptverfasser: Wilson, Jude, Huynh, Chau, Kennedy, Kathleen A, Ward, Diane M, Kaplan, Jerry, Aderem, Alan, Andrews, Norma W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The intracellular protozoan Leishmania replicates in parasitophorous vacuoles (PV) that share many features with late endosomes/lysosomes. L. amazonensis PVs expand markedly during infections, but the impact of PV size on parasite intracellular survival is still unknown. Here we show that host cells infected with L. amazonensis upregulate transcription of LYST/Beige, which was previously shown to regulate lysosome size. Mutations in LYST/Beige caused further PV expansion and enhanced L. amazonensis replication. In contrast, LYST/Beige overexpression led to small PVs that did not sustain parasite growth. Treatment of LYST/Beige over-expressing cells with vacuolin-1 reversed this phenotype, expanding PVs and promoting parasite growth. The opposite was seen with E-64d, which reduced PV size in LYST-Beige mutant cells and inhibited L. amazonensis replication. Enlarged PVs appear to protect parasites from oxidative damage, since inhibition of nitric oxide synthase had no effect on L. amazonensis viability within large PVs, but enhanced their growth within LYST/Beige-induced small PVs. Thus, the upregulation of LYST/Beige in infected cells functions as a host innate response to limit parasite growth, by reducing PV volume and inhibiting intracellular survival.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1000179