Development of a humanized antibody with high therapeutic potential against dengue virus type 2

Dengue virus (DENV) is a significant public health threat in tropical and subtropical regions of the world. A therapeutic antibody against the viral envelope (E) protein represents a promising immunotherapy for disease control. We generated seventeen novel mouse monoclonal antibodies (mAbs) with hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2012-05, Vol.6 (5), p.e1636-e1636
Hauptverfasser: Li, Pi-Chun, Liao, Mei-Ying, Cheng, Ping-Chang, Liang, Jian-Jong, Liu, I-Ju, Chiu, Chien-Yu, Lin, Yi-Ling, Chang, Gwong-Jen J, Wu, Han-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dengue virus (DENV) is a significant public health threat in tropical and subtropical regions of the world. A therapeutic antibody against the viral envelope (E) protein represents a promising immunotherapy for disease control. We generated seventeen novel mouse monoclonal antibodies (mAbs) with high reactivity against E protein of dengue virus type 2 (DENV-2). The mAbs were further dissected using recombinant E protein domain I-II (E-DI-II) and III (E-DIII) of DENV-2. Using plaque reduction neutralization test (PRNT) and mouse protection assay with lethal doses of DENV-2, we identified four serotype-specific mAbs that had high neutralizing activity against DENV-2 infection. Of the four, E-DIII targeting mAb DB32-6 was the strongest neutralizing mAb against diverse DENV-2 strains. Using phage display and virus-like particles (VLPs) we found that residue K310 in the E-DIII A-strand was key to mAb DB32-6 binding E-DIII. We successfully converted DB32-6 to a humanized version that retained potency for the neutralization of DENV-2 and did not enhance the viral infection. The DB32-6 showed therapeutic efficacy against mortality induced by different strains of DENV-2 in two mouse models even in post-exposure trials. We used novel epitope mapping strategies, by combining phage display with VLPs, to identify the important A-strand epitopes with strong neutralizing activity. This study introduced potential therapeutic antibodies that might be capable of providing broad protection against diverse DENV-2 infections without enhancing activity in humans.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0001636