Breeding sites of Phlebotomus sergenti, the sand fly vector of cutaneous leishmaniasis in the Judean Desert

Phlebotomine sand flies transmit Leishmania, phlebo-viruses and Bartonella to humans. A prominent gap in our knowledge of sand fly biology remains the ecology of their immature stages. Sand flies, unlike mosquitoes do not breed in water and only small numbers of larvae have been recovered from diver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2012-07, Vol.6 (7), p.e1725-e1725
Hauptverfasser: Moncaz, Aviad, Faiman, Roy, Kirstein, Oscar, Warburg, Alon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phlebotomine sand flies transmit Leishmania, phlebo-viruses and Bartonella to humans. A prominent gap in our knowledge of sand fly biology remains the ecology of their immature stages. Sand flies, unlike mosquitoes do not breed in water and only small numbers of larvae have been recovered from diverse habitats that provide stable temperatures, high humidity and decaying organic matter. We describe studies designed to identify and characterize sand fly breeding habitats in a Judean Desert focus of cutaneous leishmaniasis. To detect breeding habitats we constructed emergence traps comprising sand fly-proof netting covering defined areas or cave openings. Large size horizontal sticky traps within the confined spaces were used to trap the sand flies. Newly eclosed male sand flies were identified based on their un-rotated genitalia. Cumulative results show that Phlebotomus sergenti the vector of Leishmania tropica rests and breeds inside caves that are also home to rock hyraxes (the reservoir hosts of L. tropica) and several rodent species. Emerging sand flies were also trapped outside covered caves, probably arriving from other caves or from smaller, concealed cracks in the rocky ledges close by. Man-made support walls constructed with large boulders were also identified as breeding habitats for Ph. sergenti albeit less important than caves. Soil samples obtained from caves and burrows were rich in organic matter and salt content. In this study we developed and put into practice a generalized experimental scheme for identifying sand fly breeding habitats and for assessing the quantities of flies that emerge from them. An improved understanding of sand fly larval ecology should facilitate the implementation of effective control strategies of sand fly vectors of Leishmania.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0001725