Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem
In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usu...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2001-04, Vol.70 (234), p.453-470 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 470 |
---|---|
container_issue | 234 |
container_start_page | 453 |
container_title | Mathematics of computation |
container_volume | 70 |
creator | Bramble, James H. Zhang, Xuejun |
description | In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual "regularity and approximation" assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted L2-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper. |
doi_str_mv | 10.1090/S0025-5718-00-01222-9 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_947761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2698762</jstor_id><sourcerecordid>2698762</sourcerecordid><originalsourceid>FETCH-LOGICAL-j202t-3b85d2ac33516a4f4083f851ef6dc6759ac981fba1bb3eb41be4d9d9cc9f0a493</originalsourceid><addsrcrecordid>eNo9zM1KAzEYheEgCtbqHSgEXEe__E6yLINWoaKgdVuSTFJTppOSjELv3oLS1Vm8DwehGwp3FAzcvwMwSWRDNQEgQBljxJygCQWtidKCnaLJkZyji1o3AECVbCZovhxSzGWL2zz8hLIOgw84Rzx-Bfzy3Y9pXVKHP0m7933AB4ntgGdDqnkseZc8fivZ9WF7ic6i7Wu4-t8pWj4-fLRPZPE6f25nC7JhwEbCnZYds55zSZUVUYDmUUsaouq8aqSx3mganaXO8eAEdUF0pjPemwhWGD5Ft3-_O1u97WOxg091tStpa8t-ZUTTKHpQ139qU8dcjpUpoxvF-C9eM1jj</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><creator>Bramble, James H. ; Zhang, Xuejun</creator><creatorcontrib>Bramble, James H. ; Zhang, Xuejun</creatorcontrib><description>In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual "regularity and approximation" assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted L2-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/S0025-5718-00-01222-9</identifier><identifier>CODEN: MCMPAF</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Approximation ; Coefficients ; Data smoothing ; Exact sciences and technology ; Inner products ; Mathematical vectors ; Mathematics ; Matrices ; Multigrid methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Property lines ; Sciences and techniques of general use ; Variable coefficients</subject><ispartof>Mathematics of computation, 2001-04, Vol.70 (234), p.453-470</ispartof><rights>Copyright 2001 American Mathematical Society</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2698762$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2698762$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=947761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bramble, James H.</creatorcontrib><creatorcontrib>Zhang, Xuejun</creatorcontrib><title>Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem</title><title>Mathematics of computation</title><description>In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual "regularity and approximation" assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted L2-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Data smoothing</subject><subject>Exact sciences and technology</subject><subject>Inner products</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Multigrid methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Property lines</subject><subject>Sciences and techniques of general use</subject><subject>Variable coefficients</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9zM1KAzEYheEgCtbqHSgEXEe__E6yLINWoaKgdVuSTFJTppOSjELv3oLS1Vm8DwehGwp3FAzcvwMwSWRDNQEgQBljxJygCQWtidKCnaLJkZyji1o3AECVbCZovhxSzGWL2zz8hLIOgw84Rzx-Bfzy3Y9pXVKHP0m7933AB4ntgGdDqnkseZc8fivZ9WF7ic6i7Wu4-t8pWj4-fLRPZPE6f25nC7JhwEbCnZYds55zSZUVUYDmUUsaouq8aqSx3mganaXO8eAEdUF0pjPemwhWGD5Ft3-_O1u97WOxg091tStpa8t-ZUTTKHpQ139qU8dcjpUpoxvF-C9eM1jj</recordid><startdate>200104</startdate><enddate>200104</enddate><creator>Bramble, James H.</creator><creator>Zhang, Xuejun</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>200104</creationdate><title>Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem</title><author>Bramble, James H. ; Zhang, Xuejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j202t-3b85d2ac33516a4f4083f851ef6dc6759ac981fba1bb3eb41be4d9d9cc9f0a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Data smoothing</topic><topic>Exact sciences and technology</topic><topic>Inner products</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Multigrid methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Property lines</topic><topic>Sciences and techniques of general use</topic><topic>Variable coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bramble, James H.</creatorcontrib><creatorcontrib>Zhang, Xuejun</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bramble, James H.</au><au>Zhang, Xuejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem</atitle><jtitle>Mathematics of computation</jtitle><date>2001-04</date><risdate>2001</risdate><volume>70</volume><issue>234</issue><spage>453</spage><epage>470</epage><pages>453-470</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><coden>MCMPAF</coden><abstract>In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual "regularity and approximation" assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted L2-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0025-5718-00-01222-9</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2001-04, Vol.70 (234), p.453-470 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_pascalfrancis_primary_947761 |
source | American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications |
subjects | Approximation Coefficients Data smoothing Exact sciences and technology Inner products Mathematical vectors Mathematics Matrices Multigrid methods Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Partial differential equations, boundary value problems Property lines Sciences and techniques of general use Variable coefficients |
title | Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Convergence%20of%20the%20Multigrid%20V-Cycle%20for%20an%20Anisotropic%20Problem&rft.jtitle=Mathematics%20of%20computation&rft.au=Bramble,%20James%20H.&rft.date=2001-04&rft.volume=70&rft.issue=234&rft.spage=453&rft.epage=470&rft.pages=453-470&rft.issn=0025-5718&rft.eissn=1088-6842&rft.coden=MCMPAF&rft_id=info:doi/10.1090/S0025-5718-00-01222-9&rft_dat=%3Cjstor_pasca%3E2698762%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2698762&rfr_iscdi=true |