Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem

In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2001-04, Vol.70 (234), p.453-470
Hauptverfasser: Bramble, James H., Zhang, Xuejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 234
container_start_page 453
container_title Mathematics of computation
container_volume 70
creator Bramble, James H.
Zhang, Xuejun
description In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual "regularity and approximation" assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted L2-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.
doi_str_mv 10.1090/S0025-5718-00-01222-9
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_947761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2698762</jstor_id><sourcerecordid>2698762</sourcerecordid><originalsourceid>FETCH-LOGICAL-j202t-3b85d2ac33516a4f4083f851ef6dc6759ac981fba1bb3eb41be4d9d9cc9f0a493</originalsourceid><addsrcrecordid>eNo9zM1KAzEYheEgCtbqHSgEXEe__E6yLINWoaKgdVuSTFJTppOSjELv3oLS1Vm8DwehGwp3FAzcvwMwSWRDNQEgQBljxJygCQWtidKCnaLJkZyji1o3AECVbCZovhxSzGWL2zz8hLIOgw84Rzx-Bfzy3Y9pXVKHP0m7933AB4ntgGdDqnkseZc8fivZ9WF7ic6i7Wu4-t8pWj4-fLRPZPE6f25nC7JhwEbCnZYds55zSZUVUYDmUUsaouq8aqSx3mganaXO8eAEdUF0pjPemwhWGD5Ft3-_O1u97WOxg091tStpa8t-ZUTTKHpQ139qU8dcjpUpoxvF-C9eM1jj</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><creator>Bramble, James H. ; Zhang, Xuejun</creator><creatorcontrib>Bramble, James H. ; Zhang, Xuejun</creatorcontrib><description>In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual "regularity and approximation" assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted L2-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/S0025-5718-00-01222-9</identifier><identifier>CODEN: MCMPAF</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Approximation ; Coefficients ; Data smoothing ; Exact sciences and technology ; Inner products ; Mathematical vectors ; Mathematics ; Matrices ; Multigrid methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Property lines ; Sciences and techniques of general use ; Variable coefficients</subject><ispartof>Mathematics of computation, 2001-04, Vol.70 (234), p.453-470</ispartof><rights>Copyright 2001 American Mathematical Society</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2698762$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2698762$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=947761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bramble, James H.</creatorcontrib><creatorcontrib>Zhang, Xuejun</creatorcontrib><title>Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem</title><title>Mathematics of computation</title><description>In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual "regularity and approximation" assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted L2-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Data smoothing</subject><subject>Exact sciences and technology</subject><subject>Inner products</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Multigrid methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Property lines</subject><subject>Sciences and techniques of general use</subject><subject>Variable coefficients</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9zM1KAzEYheEgCtbqHSgEXEe__E6yLINWoaKgdVuSTFJTppOSjELv3oLS1Vm8DwehGwp3FAzcvwMwSWRDNQEgQBljxJygCQWtidKCnaLJkZyji1o3AECVbCZovhxSzGWL2zz8hLIOgw84Rzx-Bfzy3Y9pXVKHP0m7933AB4ntgGdDqnkseZc8fivZ9WF7ic6i7Wu4-t8pWj4-fLRPZPE6f25nC7JhwEbCnZYds55zSZUVUYDmUUsaouq8aqSx3mganaXO8eAEdUF0pjPemwhWGD5Ft3-_O1u97WOxg091tStpa8t-ZUTTKHpQ139qU8dcjpUpoxvF-C9eM1jj</recordid><startdate>200104</startdate><enddate>200104</enddate><creator>Bramble, James H.</creator><creator>Zhang, Xuejun</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>200104</creationdate><title>Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem</title><author>Bramble, James H. ; Zhang, Xuejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j202t-3b85d2ac33516a4f4083f851ef6dc6759ac981fba1bb3eb41be4d9d9cc9f0a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Data smoothing</topic><topic>Exact sciences and technology</topic><topic>Inner products</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Multigrid methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Property lines</topic><topic>Sciences and techniques of general use</topic><topic>Variable coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bramble, James H.</creatorcontrib><creatorcontrib>Zhang, Xuejun</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bramble, James H.</au><au>Zhang, Xuejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem</atitle><jtitle>Mathematics of computation</jtitle><date>2001-04</date><risdate>2001</risdate><volume>70</volume><issue>234</issue><spage>453</spage><epage>470</epage><pages>453-470</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><coden>MCMPAF</coden><abstract>In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual "regularity and approximation" assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted L2-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0025-5718-00-01222-9</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2001-04, Vol.70 (234), p.453-470
issn 0025-5718
1088-6842
language eng
recordid cdi_pascalfrancis_primary_947761
source American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications
subjects Approximation
Coefficients
Data smoothing
Exact sciences and technology
Inner products
Mathematical vectors
Mathematics
Matrices
Multigrid methods
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations, boundary value problems
Property lines
Sciences and techniques of general use
Variable coefficients
title Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Convergence%20of%20the%20Multigrid%20V-Cycle%20for%20an%20Anisotropic%20Problem&rft.jtitle=Mathematics%20of%20computation&rft.au=Bramble,%20James%20H.&rft.date=2001-04&rft.volume=70&rft.issue=234&rft.spage=453&rft.epage=470&rft.pages=453-470&rft.issn=0025-5718&rft.eissn=1088-6842&rft.coden=MCMPAF&rft_id=info:doi/10.1090/S0025-5718-00-01222-9&rft_dat=%3Cjstor_pasca%3E2698762%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2698762&rfr_iscdi=true