Uniform Convergence of the Multigrid V-Cycle for an Anisotropic Problem

In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2001-04, Vol.70 (234), p.453-470
Hauptverfasser: Bramble, James H., Zhang, Xuejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual "regularity and approximation" assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted L2-norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.
ISSN:0025-5718
1088-6842
DOI:10.1090/S0025-5718-00-01222-9