Numerical analysis of kinematic response of single piles

Recent destructive earthquakes have highlighted the need for increased research into the revamping of design codes and building regulations to prevent further catastrophic losses in terms of human life and economic assets. The present study investigated the response of single piles to kinematic seis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2000-12, Vol.37 (6), p.1368-1382
Hauptverfasser: Bentley, Kevin J, Naggar, M Hesham El
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent destructive earthquakes have highlighted the need for increased research into the revamping of design codes and building regulations to prevent further catastrophic losses in terms of human life and economic assets. The present study investigated the response of single piles to kinematic seismic loading using the three-dimensional finite element program ANSYS. The objectives of this study were (i) to develop a finite element model that can accurately model the kinematic soil–structure interaction of piles, accounting for the nonlinear behaviour of the soil, discontinuity conditions at the pile–soil interface, energy dissipation, and wave propagation; and (ii) to use the developed model to evaluate the kinematic interaction effects on the pile response with respect to the input ground motion. The static performance of the model was verified against exact available solutions for benchmark problems including piles in elastic and elastoplastic soils. The geostatic stresses were accounted for and radiating boundaries were provided to replicate actual field conditions. Earthquake excitation with a low predominant frequency was applied as an acceleration–time history at the base bedrock of the finite element mesh. To evaluate the effects of the kinematic loading, the responses of both the free-field soil (with no piles) and the pile head were compared. It was found that the effect of the response of piles in elastic soil was slightly amplified in terms of accelerations and Fourier amplitudes. However, for elastoplastic soil with separation allowed, the pile head response closely resembled the free-field response to the low-frequency seismic excitation and the range of pile and soil parameters considered in this study.Key words: numerical modelling, dynamic, lateral, piles, kinematic, seismic.
ISSN:0008-3674
1208-6010
DOI:10.1139/t00-066