Feedback linearization families for nonlinear systems
Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recent...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1987-10, Vol.32 (10), p.935-940 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 940 |
---|---|
container_issue | 10 |
container_start_page | 935 |
container_title | IEEE transactions on automatic control |
container_volume | 32 |
creator | Jianliang Wang Rugh, W. |
description | Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recently-developed extended linearization design approach to various types of control problems. To illustrate, the input-output decoupling problem is considered. |
doi_str_mv | 10.1109/TAC.1987.1104470 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_7676454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1104470</ieee_id><sourcerecordid>28878056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-211d679e8308f69f5601f58a5da7926e7594432ea477dde75498f277f7c914af3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKt7wc0sxN3UJJPnshSrQsFNXYeYuYHoPGoyXdRfb8oMdevqcrjf-RYHoVuCF4Rg_bhdrhZEK3lMjEl8hmaEc1VSTqtzNMOYqFJTJS7RVUqfOQrGyAzxNUD9Yd1X0YQObAw_dgh9V3jbhiZAKnwfi67vxm-RDmmANl2jC2-bBDfTnaP39dN29VJu3p5fV8tN6SpOh5ISUgupQVVYeaE9F5h4riyvrdRUgOSasYqCZVLWdY5MK0-l9NJpwqyv5uhh9O5i_72HNJg2JAdNYzvo98lQpaTCXPwDzCjDOIN4BF3sU4rgzS6G1saDIdgchzR5SHMc0kxD5sr95LbJ2cZH27mQTj0ppGCcZexuxAIA_FknyS_PX3oP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28288400</pqid></control><display><type>article</type><title>Feedback linearization families for nonlinear systems</title><source>IEEE Electronic Library (IEL)</source><creator>Jianliang Wang ; Rugh, W.</creator><creatorcontrib>Jianliang Wang ; Rugh, W.</creatorcontrib><description>Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recently-developed extended linearization design approach to various types of control problems. To illustrate, the input-output decoupling problem is considered.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1987.1104470</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Feedback control ; Linear feedback control systems ; Nonlinear control systems ; Nonlinear dynamical systems ; Nonlinear systems ; Output feedback ; State feedback</subject><ispartof>IEEE transactions on automatic control, 1987-10, Vol.32 (10), p.935-940</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-211d679e8308f69f5601f58a5da7926e7594432ea477dde75498f277f7c914af3</citedby><cites>FETCH-LOGICAL-c352t-211d679e8308f69f5601f58a5da7926e7594432ea477dde75498f277f7c914af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1104470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1104470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7676454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jianliang Wang</creatorcontrib><creatorcontrib>Rugh, W.</creatorcontrib><title>Feedback linearization families for nonlinear systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recently-developed extended linearization design approach to various types of control problems. To illustrate, the input-output decoupling problem is considered.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Linear feedback control systems</subject><subject>Nonlinear control systems</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Output feedback</subject><subject>State feedback</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKt7wc0sxN3UJJPnshSrQsFNXYeYuYHoPGoyXdRfb8oMdevqcrjf-RYHoVuCF4Rg_bhdrhZEK3lMjEl8hmaEc1VSTqtzNMOYqFJTJS7RVUqfOQrGyAzxNUD9Yd1X0YQObAw_dgh9V3jbhiZAKnwfi67vxm-RDmmANl2jC2-bBDfTnaP39dN29VJu3p5fV8tN6SpOh5ISUgupQVVYeaE9F5h4riyvrdRUgOSasYqCZVLWdY5MK0-l9NJpwqyv5uhh9O5i_72HNJg2JAdNYzvo98lQpaTCXPwDzCjDOIN4BF3sU4rgzS6G1saDIdgchzR5SHMc0kxD5sr95LbJ2cZH27mQTj0ppGCcZexuxAIA_FknyS_PX3oP</recordid><startdate>19871001</startdate><enddate>19871001</enddate><creator>Jianliang Wang</creator><creator>Rugh, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19871001</creationdate><title>Feedback linearization families for nonlinear systems</title><author>Jianliang Wang ; Rugh, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-211d679e8308f69f5601f58a5da7926e7594432ea477dde75498f277f7c914af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Linear feedback control systems</topic><topic>Nonlinear control systems</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Output feedback</topic><topic>State feedback</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianliang Wang</creatorcontrib><creatorcontrib>Rugh, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianliang Wang</au><au>Rugh, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback linearization families for nonlinear systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1987-10-01</date><risdate>1987</risdate><volume>32</volume><issue>10</issue><spage>935</spage><epage>940</epage><pages>935-940</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recently-developed extended linearization design approach to various types of control problems. To illustrate, the input-output decoupling problem is considered.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1987.1104470</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1987-10, Vol.32 (10), p.935-940 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_pascalfrancis_primary_7676454 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Computer science control theory systems Control system synthesis Control systems Control theory. Systems Eigenvalues and eigenfunctions Exact sciences and technology Feedback control Linear feedback control systems Nonlinear control systems Nonlinear dynamical systems Nonlinear systems Output feedback State feedback |
title | Feedback linearization families for nonlinear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback%20linearization%20families%20for%20nonlinear%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Jianliang%20Wang&rft.date=1987-10-01&rft.volume=32&rft.issue=10&rft.spage=935&rft.epage=940&rft.pages=935-940&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1987.1104470&rft_dat=%3Cproquest_RIE%3E28878056%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28288400&rft_id=info:pmid/&rft_ieee_id=1104470&rfr_iscdi=true |