Feedback linearization families for nonlinear systems

Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1987-10, Vol.32 (10), p.935-940
Hauptverfasser: Jianliang Wang, Rugh, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue 10
container_start_page 935
container_title IEEE transactions on automatic control
container_volume 32
creator Jianliang Wang
Rugh, W.
description Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recently-developed extended linearization design approach to various types of control problems. To illustrate, the input-output decoupling problem is considered.
doi_str_mv 10.1109/TAC.1987.1104470
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_7676454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1104470</ieee_id><sourcerecordid>28878056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-211d679e8308f69f5601f58a5da7926e7594432ea477dde75498f277f7c914af3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKt7wc0sxN3UJJPnshSrQsFNXYeYuYHoPGoyXdRfb8oMdevqcrjf-RYHoVuCF4Rg_bhdrhZEK3lMjEl8hmaEc1VSTqtzNMOYqFJTJS7RVUqfOQrGyAzxNUD9Yd1X0YQObAw_dgh9V3jbhiZAKnwfi67vxm-RDmmANl2jC2-bBDfTnaP39dN29VJu3p5fV8tN6SpOh5ISUgupQVVYeaE9F5h4riyvrdRUgOSasYqCZVLWdY5MK0-l9NJpwqyv5uhh9O5i_72HNJg2JAdNYzvo98lQpaTCXPwDzCjDOIN4BF3sU4rgzS6G1saDIdgchzR5SHMc0kxD5sr95LbJ2cZH27mQTj0ppGCcZexuxAIA_FknyS_PX3oP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28288400</pqid></control><display><type>article</type><title>Feedback linearization families for nonlinear systems</title><source>IEEE Electronic Library (IEL)</source><creator>Jianliang Wang ; Rugh, W.</creator><creatorcontrib>Jianliang Wang ; Rugh, W.</creatorcontrib><description>Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recently-developed extended linearization design approach to various types of control problems. To illustrate, the input-output decoupling problem is considered.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1987.1104470</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Feedback control ; Linear feedback control systems ; Nonlinear control systems ; Nonlinear dynamical systems ; Nonlinear systems ; Output feedback ; State feedback</subject><ispartof>IEEE transactions on automatic control, 1987-10, Vol.32 (10), p.935-940</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-211d679e8308f69f5601f58a5da7926e7594432ea477dde75498f277f7c914af3</citedby><cites>FETCH-LOGICAL-c352t-211d679e8308f69f5601f58a5da7926e7594432ea477dde75498f277f7c914af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1104470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1104470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7676454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jianliang Wang</creatorcontrib><creatorcontrib>Rugh, W.</creatorcontrib><title>Feedback linearization families for nonlinear systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recently-developed extended linearization design approach to various types of control problems. To illustrate, the input-output decoupling problem is considered.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Linear feedback control systems</subject><subject>Nonlinear control systems</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Output feedback</subject><subject>State feedback</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKt7wc0sxN3UJJPnshSrQsFNXYeYuYHoPGoyXdRfb8oMdevqcrjf-RYHoVuCF4Rg_bhdrhZEK3lMjEl8hmaEc1VSTqtzNMOYqFJTJS7RVUqfOQrGyAzxNUD9Yd1X0YQObAw_dgh9V3jbhiZAKnwfi67vxm-RDmmANl2jC2-bBDfTnaP39dN29VJu3p5fV8tN6SpOh5ISUgupQVVYeaE9F5h4riyvrdRUgOSasYqCZVLWdY5MK0-l9NJpwqyv5uhh9O5i_72HNJg2JAdNYzvo98lQpaTCXPwDzCjDOIN4BF3sU4rgzS6G1saDIdgchzR5SHMc0kxD5sr95LbJ2cZH27mQTj0ppGCcZexuxAIA_FknyS_PX3oP</recordid><startdate>19871001</startdate><enddate>19871001</enddate><creator>Jianliang Wang</creator><creator>Rugh, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19871001</creationdate><title>Feedback linearization families for nonlinear systems</title><author>Jianliang Wang ; Rugh, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-211d679e8308f69f5601f58a5da7926e7594432ea477dde75498f277f7c914af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Linear feedback control systems</topic><topic>Nonlinear control systems</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Output feedback</topic><topic>State feedback</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianliang Wang</creatorcontrib><creatorcontrib>Rugh, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianliang Wang</au><au>Rugh, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback linearization families for nonlinear systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1987-10-01</date><risdate>1987</risdate><volume>32</volume><issue>10</issue><spage>935</spage><epage>940</epage><pages>935-940</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Characterizations are developed for parameterized, linear, dynamic feedback control laws that can arise when linearizing a nonlinear, dynamic feedback control law for a specified nonlinear system about a family of constant operating points. Such characterizations are important in applying the recently-developed extended linearization design approach to various types of control problems. To illustrate, the input-output decoupling problem is considered.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1987.1104470</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1987-10, Vol.32 (10), p.935-940
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_7676454
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer science
control theory
systems
Control system synthesis
Control systems
Control theory. Systems
Eigenvalues and eigenfunctions
Exact sciences and technology
Feedback control
Linear feedback control systems
Nonlinear control systems
Nonlinear dynamical systems
Nonlinear systems
Output feedback
State feedback
title Feedback linearization families for nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback%20linearization%20families%20for%20nonlinear%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Jianliang%20Wang&rft.date=1987-10-01&rft.volume=32&rft.issue=10&rft.spage=935&rft.epage=940&rft.pages=935-940&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1987.1104470&rft_dat=%3Cproquest_RIE%3E28878056%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28288400&rft_id=info:pmid/&rft_ieee_id=1104470&rfr_iscdi=true