Linear stability of symplectic maps

A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1987-05, Vol.28 (5), p.1036-1051
Hauptverfasser: Howard, J. E., MacKay, R. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1051
container_issue 5
container_start_page 1036
container_title Journal of mathematical physics
container_volume 28
creator Howard, J. E.
MacKay, R. S.
description A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The results are applicable to many physical problems, including the restricted three‐body problem and orbital stability in particle accelerators.
doi_str_mv 10.1063/1.527544
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_7445066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-1080416ab68662835bdaec60d20f14a7b791b3276c5f609214734999bb547573</originalsourceid><addsrcrecordid>eNp9z8tKxDAYBeAgCtZR8BEKutBFxz_3ZCnDeIGCm9mHJG0g0mlLUoS-vZXK7HR1Nh_ncBC6xbDFIOgT3nIiOWNnqMCgdCUFV-eoACCkIkypS3SV8ycAxoqxAt3VsW9tKvNkXeziNJdDKPN8HLvWT9GXRzvma3QRbJfbm9_coMPL_rB7q-qP1_fdc115qtRULXPAsLBOKCGIotw1tvUCGgIBMyud1NhRIoXnQYAmmEnKtNbOcSa5pBv0sNb6NOSc2mDGFI82zQaD-flmsFm_LfR-paPN3nYh2d7HfPKSMQ5CLOxxZdnHyU5x6P-r_NN-DenkzNgE-g1YeWad</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear stability of symplectic maps</title><source>AIP Digital Archive</source><creator>Howard, J. E. ; MacKay, R. S.</creator><creatorcontrib>Howard, J. E. ; MacKay, R. S.</creatorcontrib><description>A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The results are applicable to many physical problems, including the restricted three‐body problem and orbital stability in particle accelerators.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.527544</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Geometry, differential geometry, and topology ; Mathematical methods in physics ; Physics</subject><ispartof>Journal of mathematical physics, 1987-05, Vol.28 (5), p.1036-1051</ispartof><rights>American Institute of Physics</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-1080416ab68662835bdaec60d20f14a7b791b3276c5f609214734999bb547573</citedby><cites>FETCH-LOGICAL-c388t-1080416ab68662835bdaec60d20f14a7b791b3276c5f609214734999bb547573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.527544$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27903,27904,76136</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7445066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Howard, J. E.</creatorcontrib><creatorcontrib>MacKay, R. S.</creatorcontrib><title>Linear stability of symplectic maps</title><title>Journal of mathematical physics</title><description>A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The results are applicable to many physical problems, including the restricted three‐body problem and orbital stability in particle accelerators.</description><subject>Exact sciences and technology</subject><subject>Geometry, differential geometry, and topology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp9z8tKxDAYBeAgCtZR8BEKutBFxz_3ZCnDeIGCm9mHJG0g0mlLUoS-vZXK7HR1Nh_ncBC6xbDFIOgT3nIiOWNnqMCgdCUFV-eoACCkIkypS3SV8ycAxoqxAt3VsW9tKvNkXeziNJdDKPN8HLvWT9GXRzvma3QRbJfbm9_coMPL_rB7q-qP1_fdc115qtRULXPAsLBOKCGIotw1tvUCGgIBMyud1NhRIoXnQYAmmEnKtNbOcSa5pBv0sNb6NOSc2mDGFI82zQaD-flmsFm_LfR-paPN3nYh2d7HfPKSMQ5CLOxxZdnHyU5x6P-r_NN-DenkzNgE-g1YeWad</recordid><startdate>19870501</startdate><enddate>19870501</enddate><creator>Howard, J. E.</creator><creator>MacKay, R. S.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870501</creationdate><title>Linear stability of symplectic maps</title><author>Howard, J. E. ; MacKay, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-1080416ab68662835bdaec60d20f14a7b791b3276c5f609214734999bb547573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Exact sciences and technology</topic><topic>Geometry, differential geometry, and topology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, J. E.</creatorcontrib><creatorcontrib>MacKay, R. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, J. E.</au><au>MacKay, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear stability of symplectic maps</atitle><jtitle>Journal of mathematical physics</jtitle><date>1987-05-01</date><risdate>1987</risdate><volume>28</volume><issue>5</issue><spage>1036</spage><epage>1051</epage><pages>1036-1051</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The results are applicable to many physical problems, including the restricted three‐body problem and orbital stability in particle accelerators.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.527544</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1987-05, Vol.28 (5), p.1036-1051
issn 0022-2488
1089-7658
language eng
recordid cdi_pascalfrancis_primary_7445066
source AIP Digital Archive
subjects Exact sciences and technology
Geometry, differential geometry, and topology
Mathematical methods in physics
Physics
title Linear stability of symplectic maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20stability%20of%20symplectic%20maps&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Howard,%20J.%20E.&rft.date=1987-05-01&rft.volume=28&rft.issue=5&rft.spage=1036&rft.epage=1051&rft.pages=1036-1051&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.527544&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true