Linear stability of symplectic maps
A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding a...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1987-05, Vol.28 (5), p.1036-1051 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1051 |
---|---|
container_issue | 5 |
container_start_page | 1036 |
container_title | Journal of mathematical physics |
container_volume | 28 |
creator | Howard, J. E. MacKay, R. S. |
description | A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The results are applicable to many physical problems, including the restricted three‐body problem and orbital stability in particle accelerators. |
doi_str_mv | 10.1063/1.527544 |
format | Article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_7445066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-1080416ab68662835bdaec60d20f14a7b791b3276c5f609214734999bb547573</originalsourceid><addsrcrecordid>eNp9z8tKxDAYBeAgCtZR8BEKutBFxz_3ZCnDeIGCm9mHJG0g0mlLUoS-vZXK7HR1Nh_ncBC6xbDFIOgT3nIiOWNnqMCgdCUFV-eoACCkIkypS3SV8ycAxoqxAt3VsW9tKvNkXeziNJdDKPN8HLvWT9GXRzvma3QRbJfbm9_coMPL_rB7q-qP1_fdc115qtRULXPAsLBOKCGIotw1tvUCGgIBMyud1NhRIoXnQYAmmEnKtNbOcSa5pBv0sNb6NOSc2mDGFI82zQaD-flmsFm_LfR-paPN3nYh2d7HfPKSMQ5CLOxxZdnHyU5x6P-r_NN-DenkzNgE-g1YeWad</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear stability of symplectic maps</title><source>AIP Digital Archive</source><creator>Howard, J. E. ; MacKay, R. S.</creator><creatorcontrib>Howard, J. E. ; MacKay, R. S.</creatorcontrib><description>A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The results are applicable to many physical problems, including the restricted three‐body problem and orbital stability in particle accelerators.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.527544</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Geometry, differential geometry, and topology ; Mathematical methods in physics ; Physics</subject><ispartof>Journal of mathematical physics, 1987-05, Vol.28 (5), p.1036-1051</ispartof><rights>American Institute of Physics</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-1080416ab68662835bdaec60d20f14a7b791b3276c5f609214734999bb547573</citedby><cites>FETCH-LOGICAL-c388t-1080416ab68662835bdaec60d20f14a7b791b3276c5f609214734999bb547573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.527544$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27903,27904,76136</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7445066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Howard, J. E.</creatorcontrib><creatorcontrib>MacKay, R. S.</creatorcontrib><title>Linear stability of symplectic maps</title><title>Journal of mathematical physics</title><description>A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The results are applicable to many physical problems, including the restricted three‐body problem and orbital stability in particle accelerators.</description><subject>Exact sciences and technology</subject><subject>Geometry, differential geometry, and topology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp9z8tKxDAYBeAgCtZR8BEKutBFxz_3ZCnDeIGCm9mHJG0g0mlLUoS-vZXK7HR1Nh_ncBC6xbDFIOgT3nIiOWNnqMCgdCUFV-eoACCkIkypS3SV8ycAxoqxAt3VsW9tKvNkXeziNJdDKPN8HLvWT9GXRzvma3QRbJfbm9_coMPL_rB7q-qP1_fdc115qtRULXPAsLBOKCGIotw1tvUCGgIBMyud1NhRIoXnQYAmmEnKtNbOcSa5pBv0sNb6NOSc2mDGFI82zQaD-flmsFm_LfR-paPN3nYh2d7HfPKSMQ5CLOxxZdnHyU5x6P-r_NN-DenkzNgE-g1YeWad</recordid><startdate>19870501</startdate><enddate>19870501</enddate><creator>Howard, J. E.</creator><creator>MacKay, R. S.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870501</creationdate><title>Linear stability of symplectic maps</title><author>Howard, J. E. ; MacKay, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-1080416ab68662835bdaec60d20f14a7b791b3276c5f609214734999bb547573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Exact sciences and technology</topic><topic>Geometry, differential geometry, and topology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, J. E.</creatorcontrib><creatorcontrib>MacKay, R. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, J. E.</au><au>MacKay, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear stability of symplectic maps</atitle><jtitle>Journal of mathematical physics</jtitle><date>1987-05-01</date><risdate>1987</risdate><volume>28</volume><issue>5</issue><spage>1036</spage><epage>1051</epage><pages>1036-1051</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The results are applicable to many physical problems, including the restricted three‐body problem and orbital stability in particle accelerators.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.527544</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1987-05, Vol.28 (5), p.1036-1051 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_pascalfrancis_primary_7445066 |
source | AIP Digital Archive |
subjects | Exact sciences and technology Geometry, differential geometry, and topology Mathematical methods in physics Physics |
title | Linear stability of symplectic maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20stability%20of%20symplectic%20maps&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Howard,%20J.%20E.&rft.date=1987-05-01&rft.volume=28&rft.issue=5&rft.spage=1036&rft.epage=1051&rft.pages=1036-1051&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.527544&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |